

STAC Update: Real-time Decisions

Peter Nabicht President, STAC

peter.nabicht@STACresearch.com

Overview

- FPGA Special Interest Group
- STAC-ML Markets (Inference)
 - Including new results!

FPGA Special Interest Group

Current collaborations: 3 main projects

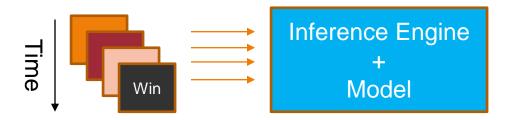
- RapidWright / RapidStream improvements, including
 - Common requirements, requests, and prioritized bugs
 - Collaborating with developers at AMD at a deeper level
- Language support
 - Jointly contribute to VHDL and SystemVerilog projects that check canonical language feature support in other tools
 - Use to convey of critical features to vendors
- Joint development of open-source Switch and/or NIC reference implementation
 - Exploring currently existing projects as starting points
 - Focus on the primary needs of trading firms

Education

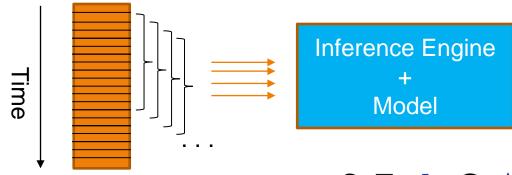
- Previously
 - Financial firms FPGA developers presented different build, test, and deploy pipelines
 - RapidWright project deep dive led by project engineers from AMD
- Upcoming
 - Tutorial for CXL for FPGA to CPU communication and impact on development from Intel

STAC-ML Markets Inference

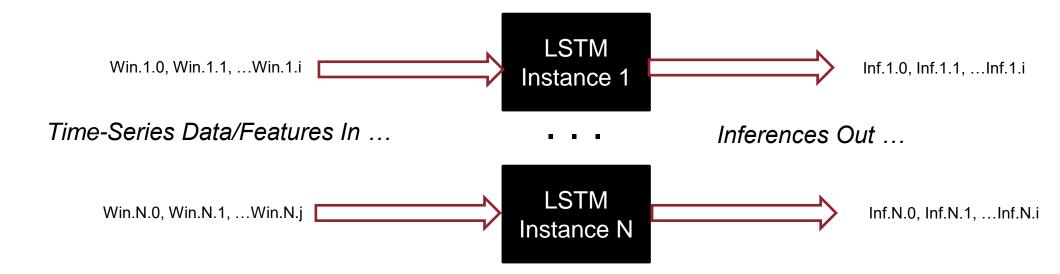
STAC-ML Markets (Inference): Basics


- LSTM models inferring on simulated market data features
- Goal: isolate <u>inference</u> performance
 - Inference engine software
 - Underlying processors, memory, accelerators, etc.
 - Anything required to optimally use the former with the latter (e.g., data transfer to processor memory)
- Metrics:
 - Latency, throughput, error, power efficiency, space efficiency, cost
- Benchmarks allow any level of precision (including mixed-precision)

Two benchmark suites


Sumaco

- Operates on fully populated, unique windows of time-series data/features
- Examples:
 - Inference over the recent past in response to an asynchronous event
 - One model may be used to reason about multiple instruments



Tacana

- Operates on sliding windows of a single time-series of data/features
- Example:
 - Inference every tick or bar
- May provide lowest possible tick-toinference latency

Benchmark Schematic; Scaling Dimensions

- Model size
 - Three are currently specified
 - Input data window scales with model size
- Number of Model Instances running in parallel
 - As specified by the SUT provider
 - Performance / efficiency per model instance is key for co-located inference

Use Cases and Optimizations

- Different Use Cases:
 - Trading Latency Optimization
 - Backtesting Throughput Optimization
- Optimization tradeoffs (latency vs throughput vs efficiency vs error) are up to the SUT provider
 - The benchmarks do not assume an inference application
 - The tests collect all metrics every time, no matter the optimization goal
 - Any quantization scheme allowed, if used consistently

STAC-ML Markets (Inference) - Comparability

- The benchmark is agnostic to the architecture of the SUT and inference engine, and the precision of the computation
- Report readers are free to draw their own conclusions
- STAC only allows direct competitive comparisons if all the following are true:
 - Same suite (Tacana to Tacana, or Sumaco to Sumaco)
 - The same LSTM model
 - Error results are comparable
 - SUT A can compare to SUT B if SUT A's error is strictly less than, or only slightly greater than SUT B's
 - All performance comparisons must include an efficiency comparison to provide context
 - All latency comparisons must include a throughput comparison for context

Myrtle.ai tested the Tacana Suite with FPGA as accelerator

Last year did STAC-ML Sumaco (MRTL221125) and now Tacana!

- STAC-ML Pack for Myrtle.ai VOLLO™ (Rev B)
- VOLLO SDK 0.2.0
- VOLLO Accelerator 0.2.0
- Ubuntu Linux 20.04.5 LTS
- BittWare TeraBox™ 1402B (1U)
 - 4 x BittWare IA-840f-0001 each with
 - Intel® Agilex™ AGF027 FPGA
 - 4 x 16 GiB DDR4 @ 2666 MHz
 - 1 x Intel[®] Xeon[®] Platinum 8351N CPU @ 2.40 GHz
 - 4 x 8 GiB Micron DDR4 @ 2933 MHz (32GiB total)
- Latency-optimized, bfloat16 precision

www.STACresearch.com/MRTL230426

Results highlights – Myrtle.ai

- For LSTM_A (the smallest model) the 99p latency was:¹
 - 5.07 μs 5.08 μs Across 1, 2 & 4 model instances tested (NMI)
 - 5.97 μs with 8 NMI
 - 6.96 μs with 24 NMI

- For LSTM_B the 99p latency was:²
 - 6.89 μs with 1 NMI
 - 6.77 μs with 2 NMI
 - 7.75 μs with 8 NMI

www.STACresearch.com/MRTL230426

- 1. STAC-ML.Markets.Inf.S.LSTM_A.[1,2,4,8,24].LAT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_B.[1,2,8].LAT.v1

Results highlights – Myrtle.ai

- For LSTM_C (the largest model) the 99p latency was:¹
 - 31.0 μs with 1 NMI

- LSTM_A with 24 NMI achieved the following throughput and efficiency:²
 - 1.4M inferences / second
 - 1.4M inferences / second / cubic foot
 - 2.3M inferences / second / kW

www.STACresearch.com/MRTL230426

- 1. STAC-ML.Markets.Inf.S.LSTM_C.[1].LAT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_A.12.[TPUT,SPACE_EFF,ENERG_EFF].v1

