

STAC-ML Introduction and Update

Bishop Brock Head of Research, STAC bishop.brock@STACresearch.com Peter Nabicht President, STAC

peter.nabicht@STACresearch.com

STAC-ML Markets (Training) Benchmark : Underway

- Existing ML training benchmarks are not specific to Finance:
 - They typically focus on <u>categorical</u> decisions (e.g., most probable next word)
 - Finance requires good <u>quantitative</u> models (e.g., fair value of a derivative)
- Many use cases have been proposed and discussed, but may not satisfy all high-level requirements:
 - Is this an ongoing concern for many end-users?
 - Can performance and quality be reliably measured and compared?
 - Can we validate that the implementation conforms to the specifications?

Some ML Training Use Cases Being Considered

Model Type / Use case	Issues / Notes
Predict prices/returns/portfolio-weights from market data	 Obviously interesting use cases Training / re-training very important Low signal-noise means models learn quickly and erratically – difficult to benchmark
Complex multi-dimensional functions (Derivative valuation, Model Calibration PDE solving)	 Also sees much current interest Not clear if training is the bottleneck for most use cases (train once and done?)
Synthetic market data generation	 Useful research and risk testing tool Quality evaluation may be difficult Again, not clear training is bottleneck
Reinforcement learning for (hedging, trading,)	 Under investigation

Training: Searching for the right workload

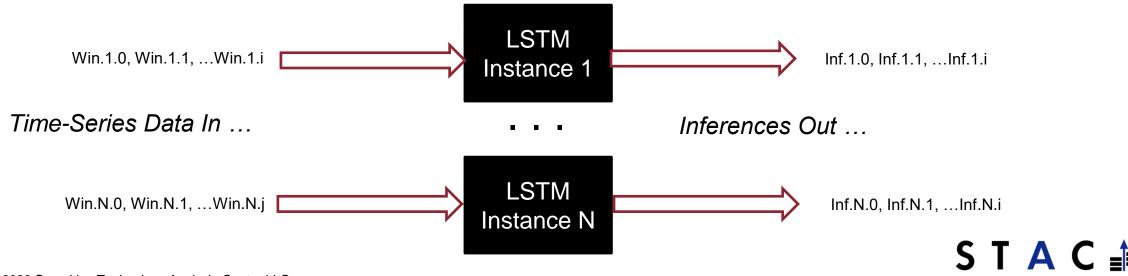
- STAC Benchmarks are defined by financial firms to reflect their needs
- What training workloads give you the insight you need?
- Join us!

STAC-ML Markets (Inference) : Basics

- LSTM models inferring on simulated market data features
- Goal: isolate inference performance
 - Inference engine software
 - Underlying processors, memory, accelerators, etc.
 - Anything required to optimally use the former with the latter (e.g., data transfer to processor memory)
- Metrics:
 - Latency, throughput, error, power efficiency, space efficiency, cost
- Benchmarks allow any level of precision (including mixed-precision)

Scale Dimensions; Benchmark Schematic

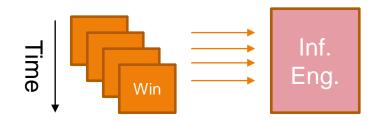
- Model size
 - Three are currently specified
 - Input data window scales with model size
- Number of Model Instances running in parallel
 - As specified by the SUT provider
 - Performance / efficiency per model instance is key for co-located inference



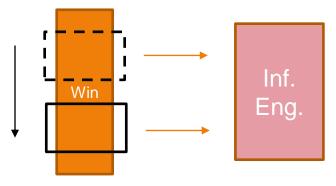
Use Cases and Optimizations; Suites

- Different Use Cases:
 - Trading Latency Optimization
 - Backtesting Throughput Optimization
- Optimization tradeoffs (latency vs throughput vs efficiency vs error) are up to the SUT provider
 - The tests collect all metrics every time, no matter the optimization goal
 - Any quantization scheme allowed, if used consistently

Sumaco – Fixed, Unique Window



Tacana - Sliding Window (Streaming)



Uses - STAC-ML Markets (Inference)

- Three users of STAC-ML
 - STAC
 - Vendors
 - Financial firms
- I will talk about all three

Research Available to ML STAC Track Subscribers

- GCP Cloud SUT
 - Latency- and Throughput-optimized configurations for ONNX inference
- TensorFlow Performance (on CPU)
 - Looked at different ways to configure TensorFlow for inference
- Azure Cloud-SUT Comparison
 - Looked at latency and throughput on 3 different CPU architectures
 - Report includes a detailed business use-case analysis
- For access:
 <u>council@STACresearch.com</u>

TensorFlow Optimization Note

- TensorFlow is becoming widely used as a general-purpose computing environment
- We explored optimization of LSTM model single-inference in TensorFlow
 - This report may be a good place to begin your own optimization research
- Some of what we found:
 - ONNX was always faster than TensorFlow for LSTM single-inference on our CPU-based test system
 - XLA compilation often but not always yields the most performant TensorFlow models
 - ... and we explain why

STAC-ML Markets (Inference) Azure Cloud-SUT Comparison

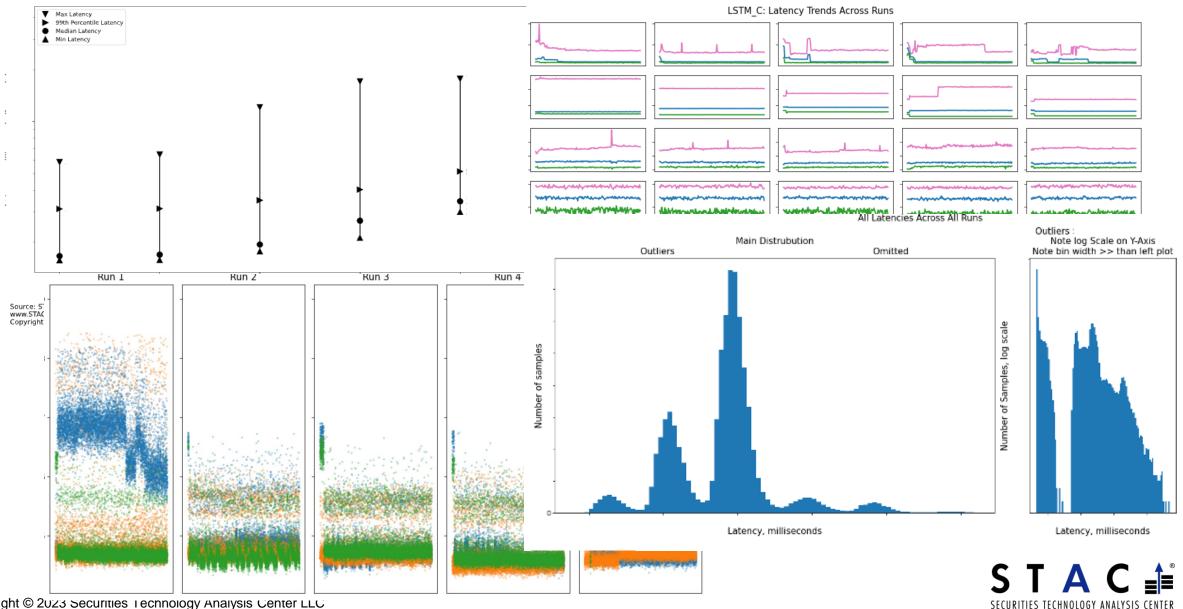
- Goal: compare 3 CPU architectures for inference
 - Intel, AMD, Ampere (ARM)
- Used the STAC "Naive" Python
 implementation with ONNX
- Tested on Microsoft Azure

Thanks to Microsoft for supporting the STAC community by providing credits for this research!

- Tested two configs for each VM (latency opt., throughput opt.)
- All 6 reports are in the STAC Vault with a comparison report
- No vendors participated in the setup and optimization of the SUTs

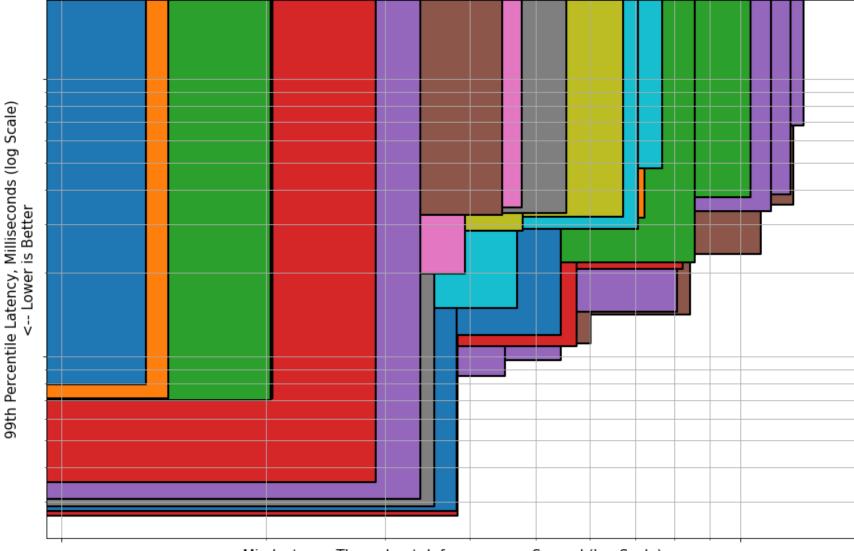
Audit Reporting: Detailed analysis available for each SUT

Latencies vs. Number of Model Instances and Throughput, All Data



Comparison Report: Business Use-Case Analysis

Cost-Optimal Configuration Visualization - Colormap Highlighting Different Optimal Areas



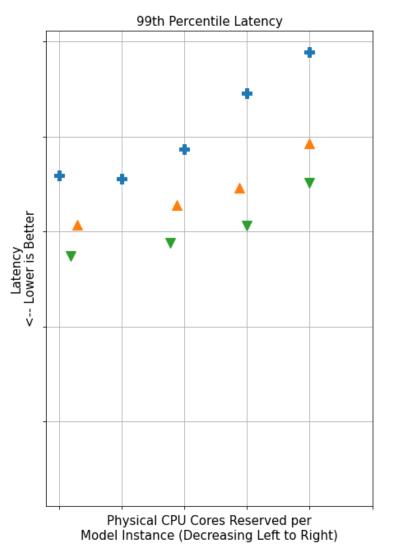
Min Instance Throughput, Inferences per Second (log Scale) Higher is Better --> Each colored area represents the most cost-efficient way to achieve any latency/throughput contained in the area.

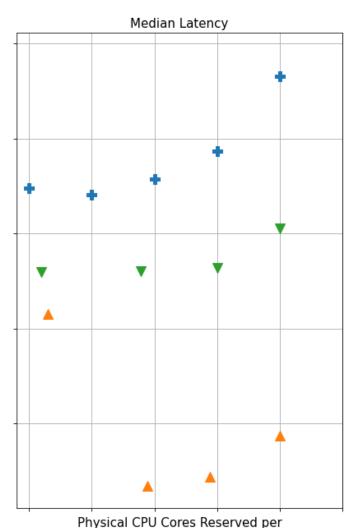
All processors (AMD, Ampere, Intel) are represented multiple times here.

SECURITIES TECHNOLOGY ANALYSIS CENTER

Comparison Report: Performance Analysis

Latencies vs. Physical CPU Cores Reserved per Model Instance X and Y Axes of the 2 Plots are Identical





Model Instance (Decreasing Left to Right)

In the report we use benchmark visualizations to explain why SUT 2 demonstrates lower 99th percentile latencies but higher median latencies than SUT1

Groq was first public tested SUT!

- STAC-ML Pack for GroqWare[™] (Rev A)
 - Version of STAC "Naive" implementation adapted for GroqWare[™] APIs
 - Effectively FP16
- GroqWare[™] SDK 0.9.0.5 devtools and runtime
- Python 3.8.15; NumPy 1.23.4
- Ubuntu Linux 22.04.1 LTS
- GroqNode[™] GN1-B8C-ES:
 - 8 x GroqCard[™] 1 Accelerators (GC1-010B)
 - 2 x AMD EPYC[™] 7413 24-core CPUs @ 2650 MHz
 - 16 slots x 64GiB DDR4 1024GiB Total

Result highlights – Groq

- For small model LSTM_A, across 1, 2 and 4 simultaneously running model instances (NMI):
 - Worst case 99th percentile latency was 56.4 µsec¹
 - 99th percentile latencies varied 1% (55.9 to 56.4 µsec)²
 - The widest spread from minimum to 99th percentile latency was 6% (53.4 to 56.4 µsec)³

SECURITIES TECHNOLOGY ANALYSIS CENTER

- 1. STAC-ML.Markets.Inf.S.LSTM_A.4.LAT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_A.[1,2,4].LAT.v1
- 3. STAC-ML.Markets.Inf.S.LSTM_A.4.LAT.v1

Result highlights – Groq

- For small model LSTM_A, across 1, 2 and 4 simultaneously running model instances (NMI):
 - Worst case 99th percentile latency was 56.4 µsec¹
 - \circ 99th percentile latencies varied 1% (55.9 to 56.4 µsec)²
 - The widest spread from minimum to 99th percentile latency was 6% (53.4 to 56.4 µsec)³

www.STACresearch.com/GROQ221014

- 1. STAC-ML.Markets.Inf.S.LSTM_A.4.LAT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_A.[1,2,4].LAT.v1
- 3. STAC-ML.Markets.Inf.S.LSTM_A.4.LAT.v1

Results highlights – Groq

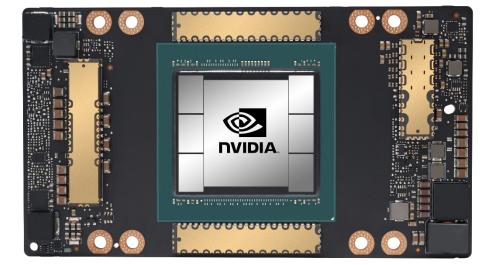
- For large model LSTM_C, across all NMI tested:
 - Worst case 99th percentile latency was 2.27 ms¹
 - 99th percentile latencies varied by 2% (2.72 to 2.77 ms)²
 - The widest spread from minimum to 99th percentile latency was 3% (2.68 to 2.77 ms)³

S T A C S S CURITIES TECHNOLOGY ANALYSIS CENTER

- 1. STAC-ML.Markets.Inf.S.LSTM_C.8.LAT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_C.[1,2,4,8].LAT.v1
- 3. STAC-ML.Markets.Inf.S.LSTM_C.8.LAT.v1

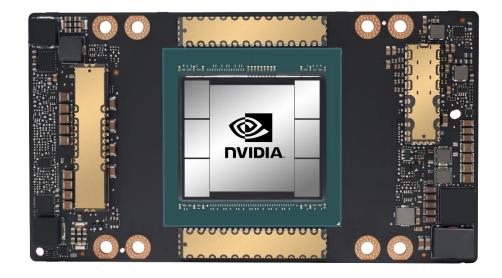
NVIDIA – 3 SUTs with same GPU-based stack

- STAC-ML Pack for CUDA and cuDDN (Rev A)
- NVIDIA CUDA Toolkit 11.7
- NVIDIA CUDA Deep Neural Network library (cuDNN) 8.4.1.50
- Ubuntu 20.04.5 LTS
- SuperMicro Ultra SuperServer SYS-620U-TNR
 - NVIDIA A100 80GB PCIe Tensor Core GPU
 - 2 x Intel Xeon Gold 6354 CPU @ 3.00GHz
 - 512GiB of memory
- Published results on two SUTs
 - Throughput optimized, Sumaco suite, FP16
 - Latency optimized, Tacana suite, FP32
- Vault Report for 3rd SUT
 - Throughput optimized, Tacana suite, FP16



Throughput optimized, Sumaco suite, FP16

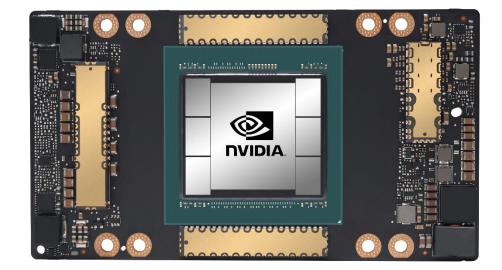
- Same stack configured to
 - Operate on a fixed window of unique updates (Sumaco)
 - Maximize throughput
 - Use FP16
- For LSTM_A, across all NMI tested:
 - Total throughput ranged from 1.63 to 1.71 M inf/sec¹
 - Energy efficiency ranged from 1.72 to 1.8 M inf/sec/kW²



- 1. STAC-ML.Markets.Inf.S.LSTM_A.[1,2,4].TPUT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_A.2.ENERG_EFF.v1

Throughput optimized, Sumaco suite, FP16

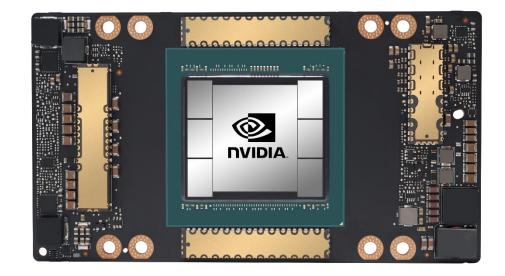
- For LSTM_B, across all NMI tested:
 - Total throughput was 191 K inf/sec¹
 - Energy efficiency was 206 K inf/sec/kW²
- For LSTM_C, across all NMI tested:
 - Total throughput was 12.8 K inf/sec³
 - Energy efficiency was 17.7 K inf/sec/kW⁴



- 1. STAC-ML.Markets.Inf.S.LSTM_B.[1,2,4].TPUT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_B.[1,2,4]. ENERG_EFF.v1
- 3. STAC-ML.Markets.Inf.S.LSTM_C.[1,2,4].TPUT.v1
- 4. STAC-ML.Markets.Inf.S.LSTM_C.[1,2,4]. ENERG_EFF.v1

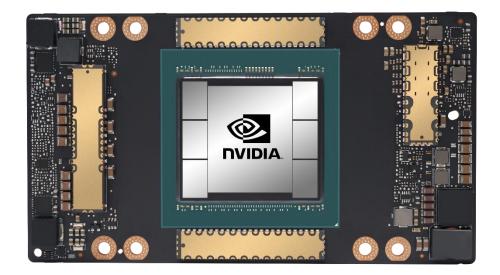
Latency optimized, Tacana suite, FP32

- Same stack configured to
 - Operate on a sliding window of updates (Tacana)
 - Minimize latency
 - Use FP32
- For LSTM_A the 99p latency :
 - With 1 NMI was 35.2 µsec¹
 - With 32 NMI was 58.8 µsec²
- For LSTM_B the 99p latency:
 - With 1 NMI was 68.5 µsec³
 - With 32 NMI was 149 µsec⁴
- 1. STAC-ML.Markets.Inf.T.LSTM_A.1.LAT.v1
- 2. STAC-ML.Markets.Inf.T.LSTM_A.32.LAT.v1
- 3. STAC-ML.Markets.Inf.T.LSTM_B.1.LAT.v1
- 4. STAC-ML.Markets.Inf.T.LSTM_B.32.LAT.v1



Latency optimized, Tacana suite, FP32

- For LSTM_C the 99p latency:
 - With 1 NMI was 640 µsec1
 - With 16 NMI was 748 µsec²
- Across all tested LSTM models and NMI, the largest outlier was 2.3x the median latency
 - Median latency 35 µsec, max latency 81 µsec³



- 1. STAC-ML.Markets.Inf.T.LSTM_C.1.LAT.v1
- 2. STAC-ML.Markets.Inf.T.LSTM_C.16.LAT.v1
- STAC-ML.Markets.Inf.T.LSTM_A.2.LAT.v1

SECURITIES TECHNOLOGY ANALYSIS CENTER

Myrtle.ai tested with FPGA as accelerator

- STAC-ML Pack for Myrtle.ai VOLLO[™] (Rev A)
 - bfloat16 precision
- VOLLO SDK 0.1.0
- VOLLO Accelerator 0.1.0
- Ubuntu Linux 22.04.1 LTS
- BittWare TeraBox[™] 1402B (1U)
 - 4 x BittWare IA-840f-0001 each with
 - Intel[®] Agilex[™] AGF027 FPGA
 - 4 x 16 GiB DDR4 @ 2666 MHz
 - 1 x Intel[®] Xeon[®] Platinum 8351N CPU @ 2.40 GHz
 - 4 x 8 GiB Micron DDR4 @ 2933 MHz (32GiB total)

Results highlights – Myrtle.ai

- 99p latencies across 1, 2, 3 & 4 NMI for:
 - LSTM_A were 24.0 24.1 μsec¹
 - LSTM_B were 64.8 µsec²
 - LSTM_C were 1.35 ms³
- For LSTM_A with 48 NMI:
 - Total throughput was 651 K inf/sec⁴
 - Space eff. was 647 K inf/sec/cubic foot⁵
 - Energy eff. was 1.2 M inf / sec/ kW⁶
 - The 99p latency was 73.9 µsec, which was 3.1x the 99th percentile latency of 1 NMI⁷
- 1. STAC-ML.Markets.Inf.S.LSTM_A.[1,2,3,4].LAT.v1
- 2. STAC-ML.Markets.Inf.S.LSTM_B.[1,2,3,4].LAT.v1
- 3. STAC-ML.Markets.Inf.S.LSTM_C.[1,2,3,4].LAT.v1
- 4. STAC-ML.Markets.Inf.S.LSTM_A.48.TPUT.v1
- 5. STAC-ML.Markets.Inf.S.LSTM_A.48. SPACE_EFF.v1
- 6. STAC-ML.Markets.Inf.S.LSTM_A.48. ENERG_EFF.v1
- 7. STAC-ML.Markets.Inf.S.LSTM_A.[1, 48].LAT.v1

Myrtle.ai

Results highlights – Myrtle.ai

- For LSTM_B with 16 NMI:
 - The 99p latency was 147 µsec, which was 2.3x the 99p latency of 1 NMI¹
- Across all Models and NMI:
 - The widest percentage spread from median to 99p latencies was 7% (26.5 µsec to 28.4 µsec)²

STAC-ML.Markets.Inf.S.LSTM_B.[1, 16].LAT.v1
 STAC-ML.Markets.Inf.S.LSTM A.12.LAT.v1

STAC-ML tools are ready for you, too

Machine Learning

Inference (STAC-ML)

STAC-ML Markets (Inference) Test Harness STAC-ML Markets (Inference) Reference Implementation (ONNX & TensorFlow) STAC-ML Pack for CUDA and cuDNN STAC-ML Pack for Myrtle.ai VOLLO STAC-ML Pack for GroqWare

- Vendor implementations See how it works
- Test harness software and analysis tools Test your own stacks
 - In fact, test your own models!

