Eス×ABடAZ三
 How hard could it be?
 Understanding network traffic at the picosecond level

Background

Introducing FDK-XP

-Everything from previous FDK
-Faster PCS/MAC
-Accelerated TCP Engine (ATE)

STAC-TO (tick-to-trade)

STAC-TO (tick-to-trade)

31 ns* *

Min. actionable latency

\author{

* Subject to final validation
}

STAC-TO (tick-to-trade)

$31 \mathbf{n s}^{*}$

Min. actionable latency

STAC-TO (tick-to-trade)

31 ns*
 Min. actionable latency Why did it take so long?

* Subject to final validation

Possible reasons

Possible reasons

1. STAC can'† measure things

Possible reasons

1. STAC can'† measure things

2. It's harder than it looks

Possible reasons

4. STAC Can' \ddagger measure things

2. It's harder than it looks

Enter the Picosecond

Problem:

When did a field in my packet arrive?

In an ideal world...

An Ethernet fame:

In an ideal world...

An Ethernet fame:

```
preamble
```

7B of
0101010

In an ideal world...

An Ethernet fame:

Start of frame delimiter (1B)

In an ideal world...

An Ethernet fame:

In an ideal world...

An Ethernet fame:

In an ideal world...

An Ethernet fame:

In an ideal world...

An Ethernet fame:

preamble	SOFD	HDR	Payload	CRC	IFG

In an ideal world...

An Ethernet fame:

In an ideal world...

An Ethernet fame:

preamble	SOFD	HDR	Payload	field	CRC	IFG
Packet starts here						

In an ideal world...

An Ethernet fame:

preamble	SOFD	HDR	Payload	field	CRC	IFG

In an ideal world...

An Ethernet fame:

Ideal calculation

Bytes offset into the packet
 Delay $=\mathrm{N}$

Ideal calculation

Convert to bits

Delay $=$ N x 8

Ideal calculation

Line rate (giga-bits per second)

Delay $=\mathrm{N} \times 8 \times 1 / 10 \mathrm{~Gb} / \mathrm{s}$

Ideal calculation

Convert to picoseconds (10^{-12})

Delay $=\mathrm{N} \times 8 \times 1 / 10 \mathrm{~Gb} / \mathrm{s} \times 1 / \mathrm{ps}$

Ideal calculation

Cancels out
 Delay $=\mathrm{N} \times 8 \times 100$

Ideal calculation

simplifies
 Delay $=\mathrm{N} \times 800$

Ideal calculation - Example

Delay $=64 \mathrm{~B} \times 800=51,200 \mathrm{ps}$

Finished?

Meanwhile in reality

10 GbE is carried using 64b/66b encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using 64b/66b encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

The control word can have a number of values (256), but the most important ones for this discussion are ...

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

Meanwhile in reality

10 GbE is carried using $64 \mathrm{~b} / 66 \mathrm{~b}$ encoding at $66 / 64 \times 10=10.3125 \mathrm{~Gb} / \mathrm{s}$

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For examle...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

The making of an Ethernet frame

The Ethernet frame is then layered on top of the 64/66 encoding layer. For example...

This raises a lot of questions....

- When does the frame start?

When does a frame start?

When does a frame start?

When does a frame start?

This raises a lot of questions....

- When does the frame start (SOF)?
- When is the SOF timestamped?

When does a frame start? And when is it timestamped

When does a frame start? And when is it timestamped

This raises a lot of questions....

- When does the frame start? And when is it timestamped?
- When does the frame end?

When does a frame end?

When does a frame end?

When does a frame end?

| 10 | So
 F7 preamble SOFD | 01 | Payload | 10 | CRC | EO
 10 | EO
 Fo |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

What about the EOFO case?

This raises a lot of questions....

- When does the frame start? And when it it timestamped?
- When does the frame end?
- How long is the frame? (in bits and in picoseconds)

How long is the frame? (In bits / picoseconds)

How long is the frame? (In bits / picoseconds)

How long is the frame? (In bits / picoseconds)

How long is the frame? (In bits / picoseconds)

How long is the frame? (In bits / picoseconds)

How long is the frame? (In bits / picoseconds)

What about the SOF3 case?

How long is the frame? (In bits / picoseconds)

10	$\begin{array}{\|l\|l\|} \text { So } \\ \text { FO } \end{array}$	prea	01	mble	SOFD	Payl	01	oad	C	10	F2	RC
		\checkmark										
		32								+2	+8	+16
		Is it 104b long @ 10Gb/s			= 10,400ps ? (ideal Ethernet view)							= 122
		Is it 160b long @ 10Gb/s			$=16,000$ ps ? (ideal Ethernet view + preamble/SOFD)							
		Is it 168b long @ 10Gb/s			= 16,800ps ? (ideal Ethernet view + XGMII preamble/SOFD)							
		Is it 114 b long @ $10.3125 \mathrm{~Gb} / \mathrm{s}=11,054 \mathrm{ps}$? (PCS[SOF7], Ethernet view)										
		Is it 172b long @ 10.3125Gb/s = 16,679ps? (PCS[SOF7], Ethernet view + preamble/SOFD)										
		Is it 122 b long @ $10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$? (PCS[SOF3], Ethernet view)										

How long is the frame? (In bits / picoseconds)

10	$\begin{aligned} & \text { SO } \\ & \text { F3 } \end{aligned}$	prea	01	mble	SOFD	Payl	01	oad	C	10	E2	RC
\checkmark												
		24	+2	+ 64				+64		+2	+8	+16
		Is it 104b long @ 10Gb/s			= 10,400ps ? (ideal Ethernet view)							= 182
		Is it 160b long @ 10Gb/s			$=16,000$ ps ? (ideal Ethernet view + preamble/SOFD)							
		Is it 168b long @ 10Gb/s			= 16,800ps ? (ideal Ethernet view + XGMII preamble/SOFD)							
		Is it 114b long @ 10.3125Gb/s = 11,054ps ? (PCS[SOF7], Ethernet view)										
		Is it 172b long @ 10.3125Gb/s = 16,679ps? (PCS[SOF7], Ethernet view + preamble/SOFD)										
		Is it 122b long @ 10.3125Gb/s = 11,830ps ? (PCS[SOF3], Ethernet view)										
		Is it 182b long @ 10.3125Gb/s = 17,648ps? (PCS[SOF3], Ethernet view + preamble/SOFD)										

How long is the frame? (In bytes / picoseconds)

10	SO	prea	01	mble	SOFD	Payl	01	oad	C	10	FO	RC
\bigcirc												
		56	+2	+64			+2	+64		+2	+8	+16 = 214
		Is it 104b long @ 10Gb/s										
		Is it 160b long @ 10Gb/s $=16,000 \mathrm{ps}$? (ideal Ethernet view + preamble/SOFD)										
		Is it 168b long @ 10Gb/s $=16,800 \mathrm{ps}$? (ideal Ethernet view + XGMII preamble/SOFD)										
		Is it 114b long @ 10.3125Gb/s = 11,054ps ? (PCS[SOF7], Ethernet view)										
		Is it 172b long @ 10.3125Gb/s = 16,679ps ? (PCS[SOF7], Ethernet view + preamble/SOFD)										
		Is it 122b long @ 10.3125Gb/s = 11,830ps ? (PCS[SOF3], Ethernet view)										
		Is it 182b long @ 10.3125Gb/s = 17,648ps ? (PCS[SOF3], Ethernet view + preamble/SOFD)										
		Is it 214b long @ 10.3125Gb/s = 20,752ps ? (PCS[SOF3/SOF7] Ethernet view)										

How long is the frame? (In bytes / picoseconds)

This raises a lot of questions....

- When does the frame start? And when it it timestamped?
- When does the frame end?
- How long is the frame? (in bits and in picoseconds)
- How far (ps) into the frame is an arbitrary offset?

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?
Is it $122 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$?

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?
Is it 122 b @ $10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$?
Note: this is smaller than above!!!

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?
Is it $122 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$?
Is it $124 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=12,024 \mathrm{ps}$?

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?
Is it $122 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$?
Is it $124 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=12,024 \mathrm{ps}$?
Is it $156 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=15,127 \mathrm{ps}$?

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?
Is it $122 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$?
Is it $124 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=12,024 \mathrm{ps}$?
Is it $156 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=15,127 \mathrm{ps}$?
Is it 64 b @ $10.3125 \mathrm{~Gb} / \mathrm{s}=6,206 \mathrm{ps}$?

How far (ps) into the frame is an offset?

Is it $120 \mathrm{~b} @ 10.000 \mathrm{~Gb} / \mathrm{s}=12,000 \mathrm{ps}$?
Is it $122 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=11,830 \mathrm{ps}$?
Is it $124 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=12,024 \mathrm{ps}$?
Is it $156 @ 10.3125 \mathrm{~Gb} / \mathrm{s}=15,127 \mathrm{ps}$?
Is it $64 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=6,206 \mathrm{ps}$?
Is it $68 \mathrm{~b} @ 10.3125 \mathrm{~Gb} / \mathrm{s}=6,594 \mathrm{ps}$?

Implications for uncertainty

1. Ethernet protocol has an average rate of $10 \mathrm{~Gb} / \mathrm{s}$ at layer 2 , but PCS effects are visible at individual packet sizes. Thus PCS encodings must be taken into account and 10.3125Ghz must be used.

Implications for uncertainty

1. Ethernet protocol has an average rate of $10 \mathrm{~Gb} / \mathrm{s}$ at layer 2 , but PCS effects are visible at individual packet sizes. Thus PCS encodings must be taken into account and 10.3125Ghz must be used.
2. Timestamps at PCS SOF3/7 and Ethernet layer SOFD have different absolute offsets*. Since both SOF3 and SOF7 may appear, these need to be accounted for.

Our recommendations....

Our recommendations....

- When does the frame start? At the start of the payload (DST MAC)

When does a frame start? At the start of the payload (DST MAC)

Our recommendations....

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC

When does a frame end? At the end of the CRC

Our recommendations....

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC
- How long is the frame? (CRC - payload)@ 10.3125G

How long is the frame? (CRC - payload) @ $10.3125 G b s$

Our recommendations....

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC
- How long is the frame? (CRC - payload) @ 10.3125G
- How far (ps) is an offset? (bit offset - payload) @ 10.3125G

How far is an offset?? (bit offset - payload) @ $10.3125 G$

Our recommendations!

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC
- How long is the frame? (CRC - payload) @ 10.3125G
- How far (ps) is an offset? (bit offset - payload) @ 10.3125G

Worked example

1. Message is 503 B long, excluding FCS (4B)

Worked example

1. Message is 503 B long, excluding FCS (4B)
2. The field is 8 B long and is offset is at 234B from the IP/UDP headers.

Worked example

1. Message is 503 B long, excluding FCS (4B)
2. The field is 8 B long and is offset is at 234B from the IP/UDP headers.
3. The Ethernet + UDP + IP headers are 42B from the "start of frame" (not including preamble + SOFD)

Ideal view of 507B Fame

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

10	SO	preamble	SOFD

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

10	S0	preamble	SOFD			$64+34 \times(2+64)$
2b						
01	HDP		01	01	01	

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

Complications with PCS layer effects

PCS SOF7 view of a 507B fame:

Complications with PCS layer effects

PCS SOF7 view bf a 507B fame:

Complications with PCS layer effects

PCS SOF3 view of a 507B fame:

Complications with PCS layer effects

PCS SOF3 view of a 507B fame:

Results Summary for Index Offset

Message Type	507
Ideal time (ps) @ 10.000	227,200

Results Summary for Index Offset

Message Type	507
Ideal time (ps) @ 10.000	227,200
PCS SOF7 time @ 10.3125 (ps)	227,103

Results Summary for Index Offset

Message Type	507
Ideal time (ps) @ 10.000	227,200
PCS SOF7 time @ 10.3125 (ps)	227,103
PCS SOF3 time @ 10.3125 (ps)	$\mathbf{2 2 7 , 1 0 3}$

Results Summary for Index Offset

Message Type	507
Ideal time (ps) @ 10.000	227,200
PCS SOF7 time @ 10.3125 (ps)	227,103
PCS SOF3 time @ 10.3125 (ps)	227,103
Uncertainty (SOF3/7)	0

Results Summary for Index Offset

Message Type	$\mathbf{5 0 7}$	$\mathbf{6 4}$	122
Ideal time (ps) @ 10.000	227,200	44,800	44,000
PCS SOF7 time @ 10.3125 (ps)	$\mathbf{2 2 7 , 1 0 3}$	44,606	43,830
PCS SOF3 time @ 10.3125 (ps)	$\mathbf{2 2 7 , 1 0 3}$	44,800	44,024
Uncertainty (SOF3/7)	0	194	194

Results Summary for Index Offset

Message Type	$\mathbf{5 0 7}$	$\mathbf{6 4}$	122
Ideal time (ps) @ 10.000	227,200	44,800	44,000
PCS SOF7 time @ 10.3125 (ps)	$\mathbf{2 2 7 , 1 0 3}$	44,606	43,830
PCS SOF3 time @ 10.3125 (ps)	$\mathbf{2 2 7 , 1 0 3}$	44,800	44,024
Uncertainty (SOF3/7)	0	194	194

Results Summary for Packet Length

Message Type	A	B	Response
Ideal time (ps) @ 10.000	405,600	54,400	97,600
PCS SOF7 time @ 10.3125 (ps)	406,303	$\mathbf{5 5 , 0 7 9}$	$\mathbf{9 8 , 3 2 7}$
PCS SOF3 time @ 10.3125 (ps)	$\mathbf{4 0 6 , 3 0 3}$	$\mathbf{5 4 , 3 0 3}$	$\mathbf{9 8 , 3 2 7}$
Uncertainty (SOF3/7)	0	-776	0

Conclusions

1. It's harder than it looks to do measurements at the picosecond scale.

Conclusions

1. It's harder than it looks to do measurements at the picosecond scale.
2. Vendors need to specify where/when timestamps are taken to facilitate index offset/frame length calculations

Conclusions

1. It's harder than it looks to do measurements at the picosecond scale.
2. Vendors need to specify where/when timestamps are taken to facilitate index offset/frame length calculations
3. When taking into account PCS layer effects, some index offsets/frame lengths are 776ps longer/later than expected.

Questions?

(or tick the box)

曰モメABடAZこ

