EEEXABLAZE How hard could it be?

Understanding network traffic at the picosecond level

Background

Introducing FDK-XP

-Everything from previous FDK -Faster PCS/MAC

-Accelerated TCP Engine (ATE)

31 ns*

* Subject to final validation

STAC-T0.β1.*.*.ACTIONABLE.MIN)

Copyright © 2019 Exablaze Pty Ltd

31 ns*

Min. actionable latency

			-
* Subject to	final	validation	

STAC-T0.β1.*.*.ACTIONABLE.MIN)

Copyright © 2019 Exablaze Pty Ltd

www.exablaze.com 6

31 ns*

Min. actionable latency Why did it take so long?

* Subject to final validation

STAC-T0.β1.*.*.ACTIONABLE.MIN)

Copyright © 2019 Exablaze Pty Ltd

www.exablaze.com 7

1. STAC can't measure things

1. STAC can't measure things

2. It's harder than it looks

1. STAC can't measure things

2. It's harder than it looks

Enter the Picosecond

Problem:

When did a field in my packet arrive?

An Ethernet fame:

preamble SOFD

Start of frame delimiter (1B)

An Ethernet fame:

14B - SRC/DST MAC address, ether type

Copyright © 2019 Exablaze Pty Ltd

An Ethernet fame:

4B (32b) frame check sequence

An Ethernet fame:

preamble	SOFD	HDR	Payload	CRC	IFG

96b interframe gap

Bytes offset into the packet

Convert to bits Delay = N x 8

Line rate (giga-bits per second) Delay = N x 8 x 1/ 10 Gb/s

Convert to picoseconds (10⁻¹²) Delay = N x 8 x 1/ 10 Gb/s x 1/ps

Ideal calculation Cancels out Delay = N x 8 x 100

simplifies Delay = N x 800

Ideal calculation - Example

Delay = 64B x 800 = 51,200ps

Finished?

10GbE is carried using 64b/66b encoding at $66/64 \times 10 = 10.3125$ Gb/s

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

10GbE is carried using 64b/66b encoding at $66/64 \times 10 = 10.3125$ Gb/s

10GbE is carried using 64b/66b encoding at $66/64 \times 10 = 10.3125$ Gb/s

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

The control word can have a number of values (256), but the most important ones for this discussion are ...

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

Start of frame 7 (SOF7) - A frame has started there are 7B (56b) of data

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

10GbE is carried using 64b/66b encoding at 66/64 x 10 = 10.3125Gb/s

The Ethernet frame is then layered on top of the 64/66 encoding layer

This raises a lot of questions....

- When does the frame start?

When does a frame start?

10	SO F7 preamble SOFD	01	Payload	10	EO F5	CRC	10
						4	

When the 64/66 SOF7 signal is found?

When does a frame start?

Or when the SOFD finishes?

When does a frame start?

Or when the payload starts?

This raises a lot of questions....

- When does the frame start (SOF)?
- When is the SOF timestamped?

When does a frame start? And when is it timestamped

When does a frame start? And when is it timestamped

What about the SOF3 case?

Copyright © 2019 Exablaze Pty Ltd

This raises a lot of questions....

- When does the frame start? And when is it timestamped?
- When does the frame end?

When does a frame end?

When the 64/66 EOF1-7 signal is found?

Copyright © 2019 Exablaze Pty Ltd

When does a frame end?

Or when the frame CRC arrives?

Copyright © 2019 Exablaze Pty Ltd

When does a frame end?

This raises a lot of questions....

- When does the frame start? And when it it timestamped?
- When does the frame end?
- How long is the frame? (in bits and in picoseconds)

What about the SOF3 case?

How long is the frame? (In bytes / picoseconds)

This raises a lot of questions....

- When does the frame start? And when it it timestamped?
- When does the frame end?
- How long is the frame? (in bits and in picoseconds)
- How far (ps) into the frame is an arbitrary offset?

Implications for uncertainty

 Ethernet protocol has an average rate of 10Gb/s at layer 2, but PCS effects are visible at individual packet sizes. Thus PCS encodings must be taken into account and 10.3125Ghz must be used.

Implications for uncertainty

- Ethernet protocol has an average rate of 10Gb/s at layer 2, but PCS effects are visible at individual packet sizes. Thus PCS encodings must be taken into account and 10.3125Ghz must be used.
- 2. Timestamps at PCS SOF3/7 and Ethernet layer SOFD have different absolute offsets*. Since both SOF3 and SOF7 may appear, these need to be accounted for.

Our recommendations....

Our recommendations....

- When does the frame start? At the start of the payload (DST MAC)

When does a frame start? At the start of the payload (DST MAC)

Our recommendations....

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC

When does a frame end? At the end of the CRC

Our recommendations....

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC
- How long is the frame? (CRC payload) @ 10.3125G

How long is the frame? (CRC - payload) @ 10.3125Gbs

Our recommendations....

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC
- How long is the frame? (CRC payload) @ 10.3125G
- How far (ps) is an offset? (bit offset payload) @ 10.3125G

How far is an offset?? (bit offset - payload) @ 10.3125G

Our recommendations!

- When does the frame start? At the start of the payload
- When does the frame end? At the end of the CRC
- How long is the frame? (CRC payload) @ 10.3125G
- How far (ps) is an offset? (bit offset payload) @ 10.3125G

Worked example

1. Message is **503**B long, excluding FCS (4B)

Worked example

- 1. Message is 503B long, excluding FCS (4B)
- 2. The field is 8B long and is offset is at **234**B from the IP/UDP headers.

Worked example

- 1. Message is 503B long, excluding FCS (4B)
- 2. The field is 8B long and is offset is at 234B from the IP/UDP headers.
- The Ethernet + UDP + IP headers are 42B from the "start of frame" (not including preamble + SOFD)

length_ps = (503+4) x 8 x 1000/10. 8B 503B 4B CRC preamble SOFD **HDRS** Payload index 42B 234B 8B index_ps = (42+234+8) x 8 x 1000/10.000 = 227,200ps

Copyright © 2019 Exablaze Pty Ltd

Complications with PCS layer effects

PCS **SOF7** view of a 507B fame:

Complications with PCS layer effects

PCS **SOF7** view of a 507B fame:

Complications with PCS layer effects

PCS **SOF7** view of a 507B fame:

index_ps = (64 + 34x(2+64) + 2 + 32) x 1000/10.3725 SO 10 preamble SOFD 227,103ps F7 2b 64b 2b 64b 2b 64b 2b 32b **HDRS** 01 01 01 01 index - - - -

Complications with PCS layer effects

Message Type	507
Ideal time (ps) @ 10.000	227,200

Message Type	507
Ideal time (ps) @ 10.000	227,200
PCS SOF7 time @ 10.3125 (ps)	227,103

Message Type	507
Ideal time (ps) @ 10.000	227,200
PCS SOF7 time @ 10.3125 (ps)	227,103
PCS SOF3 time @ 10.3125 (ps)	227,103

Message Type	507
Ideal time (ps) @ 10.000	227,200
PCS SOF7 time @ 10.3125 (ps)	227,103
PCS SOF3 time @ 10.3125 (ps)	227,103
Uncertainty (SOF3/7)	0

Message Type	507	64	122
Ideal time (ps) @ 10.000	227,200	44,800	44,000
PCS SOF7 time @ 10.3125 (ps)	227,103	44,606	43,830
PCS SOF3 time @ 10.3125 (ps)	227,103	44,800	44,024
Uncertainty (SOF3/7)	0	194	194

Message Type	507	64	122
Ideal time (ps) @ 10.000	227,200	44,800	44,000
PCS SOF7 time @ 10.3125 (ps)	227,103	44,606	43,830
PCS SOF3 time @ 10.3125 (ps)	227,103	44,800	44,024
Uncertainty (SOF3/7)	0	194	194

Results Summary for Packet Length

Message Type	Α	В	Response
Ideal time (ps) @ 10.000	405,600	54,400	97,600
PCS SOF7 time @ 10.3125 (ps)	406,303	55,079	98,327
PCS SOF3 time @ 10.3125 (ps)	406,303	54,303	98,327
Uncertainty (SOF3/7)	0	-776	0

Conclusions

1. It's harder than it looks to do measurements at the picosecond scale.

Conclusions

- 1. It's harder than it looks to do measurements at the picosecond scale.
- 2. Vendors need to specify where/when timestamps are taken to facilitate index offset/frame length calculations

Conclusions

- 1. It's harder than it looks to do measurements at the picosecond scale.
- 2. Vendors need to specify where/when timestamps are taken to facilitate index offset/frame length calculations
- 3. When taking into account PCS layer effects, some index offsets/frame lengths are 776ps longer/later than expected.

Questions?

(or tick the box)

EEXABLAZE