
Securing Low-latency Hardware Designs

Michael O’Sullivan, Engineering Director, Cadence Design Systems

STAC Spring 2022 Summits

© 2022 Cadence Design Systems, Inc. All rights reserved.2

Cyber Security: Who Cares?
Aero/Def, auto, medical, industrial, comms, IoT, semi, robotics, …

• Impact: $460M loss in 45 minutes

• Multiple factors in loss
o Improperly set flag put system into test mode

o Improperly configured production env

o Dead code in production env (“Power Peg”)

o Lack of formal QA process

• Bug could have been a security issue
o “Power Peg” was essentially a trojan

Financial Technology

Knight Capital Group

Source: https://www.bugsnag.com/blog/bug-day-460m-loss

© 2022 Cadence Design Systems, Inc. All rights reserved.3

• Security starts with a foundation of comprehensive verification

• All projects should be security aware, adding technology to support by security requirements

Build To Objective Security Analysis

• Comprehensive asset analysis via security properties / rules

• System level security scenario verification

Property / Rules
Driven Security

• Formal property analysis guided by rules/SME analysis

• Comprehensive Mitre CWE analysis

Asset-Specific
Security

• Mitre CWE (ex. 1193 power-on, 1276 connectivity,
1242 undocumented features, 1245 improper state machines)

Security Aware
Verification

• Automated metrics analysis to verification plan

• Safety and rad-hard verification as needed

Comprehensive

Verification

• 100% code coverage w/ dead code and waiver analysis

• Comprehensive lint analysis including coding weakness

Essential

Verification

More Subjective

More Objective

Functional

Verification

Security

Properties

/ Rules

Formal

Emulation

and PSS

© 2022 Cadence Design Systems, Inc. All rights reserved.4

• Coding style can leave a
design exposed
o Ex: side-channel exploit could be

forcing data input that causes a
register overflow resulting in a
denial of service

o Ex: trojan hiding in state machines

• Examples coding issues
o Undefined states in explicit and

implicit state machines

o Incomplete if-then-else statements

o Uninitialized variable/signal states

o Livelock/deadlock states

o Unguarded overflow/ underflow
registers/ queues/arrays, etc.

• Dead code elimination
o Code coverage analysis

Using Lint Checks to Reduce Potential Attack Surfaces

+

Structural Lint

& DFT Checks

Automatic

Formal

Checks

Naming

Coding style

Sim-synth

mismatch
DFT

observability

DFT controllability

LPDDR
NAND

FLASH

Reachability

Livelock/

deadlock

Combo loop

analysis

Range overflow

Arithmetic

overflow

Bus contention

X assignment

Low-noise violation

& waiver handling

Enabled by true

formal technology

© 2022 Cadence Design Systems, Inc. All rights reserved.5

• CWE: list of known
weaknesses that a
secure system should
not have

• Mitre Corp maintains
an online db

• Started with SW CWE,
HW added about a
year ago

© 2022 Cadence Design Systems, Inc. All rights reserved.6

Security Verification Plan – Central Aggregation Point for Security Data

Import and Reuse

Security Plans

Link to

Security Specs

Security

Requirements

(from req.

mgmt.)

Identify

Security Metrics

Security vPlan

Collaborate on common

Security Plan

http://www.uvmworld.org/index.php
http://www.uvmworld.org/index.php
http://www.uvmworld.org/index.php
http://www.uvmworld.org/index.php

© 2022 Cadence Design Systems, Inc. All rights reserved.7

Security Reference Platform

© 2022 Cadence Design Systems, Inc. All rights reserved.8

• Faulty finite state machines (FSMs) in HW logic allow attacker to put system in
undefined state causing denial of service (DoS) or gain privileges to system

• Formal analysis automatically extracts all states and transitions for each FSM in design

• Unreachable states/transitions indicate potential weaknesses where faults can lead the
design into unknown behaviors

Improper Finite State Machines in HW Logic with SuperLint
CWE Description Formal Application

1245 Improper Finite State Machines (FSMs) in Hardware Logic SuperLint

© 2022 Cadence Design Systems, Inc. All rights reserved.9

Key Overwrite in Wipe Mode Found with Formal Property Verification

assert {u_ctrl.state_q == StCtrlWipe |-> (ctrl_lfsr_en && wipe_key)}

key values must be filled with random data

assert {u_ctrl.state_q == StCtrlWipe |-> kmac_key.key[0] == {8{ctrl_rand[0]}} }

assert {u_ctrl.state_q == StCtrlWipe |-> kmac_key.key[1] == {8{ctrl_rand[1]}} }

software operations are forbidden when keymanager is disabled during key wipe

assert {!u_ctrl.en_i |-> u_ctrl.disable_sel && stage_sel == Disable}

LFSR must be enabled in key wipe state

LFSR supplies

random data to Key

Manager sub-blocks

CWE Description Formal Application

1258 Exposure of Sensitive System Information Due to Uncleared Debug Information Formal Property Verification

© 2022 Cadence Design Systems, Inc. All rights reserved.10

• Internal key is maintained inside of the keymgr_ctrl block

Key Verification with Security Path Verification (SPV)

Confidentiality (leakage) – inject taint (unique tag) at

the key and look for propagation at block outputs

Integrity (corruption) – inject taint at the

inputs and look for propagation to key

CWE Description Weakness

1263 Improper Physical Access Control Data Confidentiality and integrity

1282 Assumed-Immutable Data is Stored in Writable Memory Data integrity

1258 Exposure of Sensitive System Information Due to Uncleared Debug Information
Data confidentiality

1330 Remnant Data Readable after Memory Erase

© 2022 Cadence Design Systems, Inc. All rights reserved.11

• Check ability to detect or eliminate hacker attacks in secure subsystems
o IP is protected against hacker attacks

o by sensors and checkers - attack raises alarm

o by error correction mechanism - attack is eliminated

o Goal is to detect or correct all attacks

Formal Safety Verification Exposes Security Vulnerability Analysis

FO Result:

Dangerous (D)

Unobserved (U)

Unobservable (S)

CO Result:

Detected (D)

Undetected (U)

Checker

Outputs (CO)

Functional

Outputs (FO)

Stimulus

DUT

Alarm

Fault

Failure

Activation Propagation

Observation

Detection

Safety

Mechanism!

Classification

S

DD DU

UD UU

CWE Description Formal Application

1261 Improper Handling of Single Even Upsets Formal Safety Verification (FSV)

© 2022 Cadence Design Systems, Inc. All rights reserved.12

Negative Testing Exposes Illegal
Scenarios Using PSS*

action generate_key {
...

share sml_core_r core;
output sml_data_buff token_out;

// API Parameters
rand crypto_algo_e algo;
rand bool extractable;
rand crypto_key_usage_e key_usage;

constraint crypto_mem_blks {
!allow_illegal_mem ->

token_out.mem_seg.mem_block in [MEM0, MEM1];
}

rand bool allow_illegal_mem;

constraint default allow_illegal_mem == false;

}

PSS

action crypto_illegal_mem_test {
activity {

do crypto_c::generate_key with {
default disable allow_illegal_mem;
allow_illegal_mem != false;
token_in.mem_seg.mem_block == MEM2;

}
do security_mod_c::nonsecure_getkey;

}
}

PSS

LEGAL Spec – Crypto

accesses only MEM0

and MEM1

Attribute to allow

illegal memories

By default, allow

only legal values

ILLEGAL – Scenario to

force crypto to write keys

to illegal memory

Disable default

(legal) rule

Concept is applicable to any SoC

resources, state variables,

protocol/memory interfaces, etc.

*PSS = Portable Stimulus Standard

(Accellera) defines stimulus usable in

simulation, emulation, and ASIC/FPGA

© 2022 Cadence Design Systems, Inc. All rights reserved.13

Broad Array of Security Solutions is Needed

Hardware logicProgrammable

system

Processors SRAM

AI/ML

Display

EHSM

Network

DSP

USB

UART

GPIO

U
se

r
lo

g
ic

AMS

Errant

behavior

2+2 = 5

Malicious

modifications

Insecure

components

Data leaks
Counterfeits/ clones

Side channels

Malware

Bugs

System-on-chip security

attack surfaces

Physical

analysis

Functional

verification

SW

dev/debug

Formal

Equivalence

Formal

Verification

Design IP

Processor

IP

Security

design

services

Traceability

tracking

Security path verification

Formal property verification

Register verification

Fault/metastability injection

Logical equivalence

Sequential equivalence

Power management

verification

Multi-engine

Planning and management

Portable stimulus gen

HW/SW verification/debug

Auto qualified

Adv node

Standards interfaces

Converters/mixed-signal

Security function

implementation

Advanced node expert team

Cleared personnel

Power

Thermal

Reliability/aging

EMIR

HW verif links to SW envs

Accurate HW/SW interaction

Blended abstraction w/ real

devices

Encryption

Authentication

HROT compatible

Secure RTOS compatible

Auto qualified safety

vPlan/tracking/mgt

Interface to reqts mgt

© 2022 Cadence Design Systems, Inc. All rights reserved.14

• Assess current functional and security verification methodology
o More comprehensive verification reduces security risk

• Discuss how security levels of assurance are applied to projects
o Set security objectives

• Execute additional security verification
o Discuss additional security verification goals

o Identify joint engineering team to bring-up and apply new tools/methodology

o Measure results from application of new tools/methodology

o Document results and support materials/training to bring-up new projects

Security Call to Action

© 2022 Cadence Design Systems, Inc. All rights reserved.15

Smart Security

Solution

Simulation
Xcelium

Cadence Security Verification Solution and Partners

SoC

Formal
Jasper

PSS
Perspec Security

vPlan &
Traceability
vManager

Emulation
Palladium

Prototyping
Protium

Tortuga
Radix Security

Verification

Greenhills
Secure RTOS

UVM
Specman
Xcelium

Exploit negative testing

to model “attack lab”

scenarios

Formal naturally exploits

negative testing

Base vPlan on

vulnerabilities database

e.g. CWE

© 2022 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence

Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI

specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

https://www.cadence.com/go/trademarks

