“Different” doesn’t mean “Difficult”:
FPGA Programming Demystified

Sergei Storojev
Staff Tools and Design Methodology Application Engineer

XILINX.

'The Case for FPGAs in Financial Computing

Standar(_:l Initial Margin Model 10x - 50x
Calculation

https://www.xilinx.com/products/boards-and-kits/alveo/applications/standard-initial-margin-model.html

Real-Time Risk Dashboard oo

https://www.xilinx.com/products/boards-and-kits/alveo/applications/real-time-risk.html

H|gh Perf(_)r_manc_e Monte carlo 49 - BAOX
Option Pricing Simulation

https://github.com/KitAway/FinancialModels AmazonF1

© Copyright 201 Xilin NOT STAC BENCHMARKS £ XILINX.

' Customizable Architectures — The FPGA Advantage

CPUs and GPUs
> High speed, high power, low efficiency
> Fixed instruction set and rigid memory hierarchy

> Developer adapts the program to the architecture

FPGAS
> High throughput, low power, high efficiency
> Flexible, fully customizable architecture

> Developer adapts the architecture to the program

© Copyright 2018 Xilinx 8 XI I_INX

'FPGAS — The Ultimate Parallel Processing Device

> No predefined instruction set or underlying architecture

> Developer customizes the architecture to his needs UltraSCALE @ ’
>> Custom datapaths Achtectus
>> Custom bit-width
>> Custom memory hierarchies

> Excels at all types of parallelism
>> Deeply pipelined (e.g. Video codecs)
>> Bit manipulations (e.g. AES, SHA)
>> Wide datapath (e.g. DNN)
>> Custom memory hierarchy (e.g: Data analytics)

> Adapts to evolving algorithms and workload needs

© Copyright 2018 Xilinx 8 XI I_INX

'FPGA Accelerator Cards That Fit Your Performance Needs

> Alveo U200
>> 18.6 Peak INT8 TOPs
>> 77GB/s DDR Memory Bandwidth
>> 31TB/s Internal SRAM Bandwidth
>> 892,000 LUTs

> Alveo U250
>> 33.3 Peak INT8 TOPs
>> 77GB/s DDR Memory Bandwidth
>> 38TB/s Internal SRAM Bandwidth
>> 1,341,000 LUTs

> Deploy in the Cloud or On-Premises

© Copyright 2018 Xilinx 8 XI I_INX

'Sounds Great! But...

HW languages are low-level and very difficult

| kKnow nothing of hardware programming
concepts

How can | even get software applications to
Interact with FPGASs?

=6 © Copyright 2018 Xilinx 8 X”_INX

'FPGA Solutions Have Come a Long Way

You can actually use C, C++ or OpenCL to
program FPGASs

Familiar parallel programming concepts apply to
FPGA development

Off-the-shelf platforms make SW acceleration
with FPGAs very easy

>> 7 © Copyright 2018 Xilinx 8 X”_INX

'Off-the-shelf Platforms Simplify FPGA Acceleration

x86 CPU FPGA
H Accel q User
.OSt. ceeler ate Application
Application Functions Code
Acceleration API AXI Interfaces Xilinx
Acceleration
Runtime and Drivers DMA Engine Platform

PCle

> No need to develop cards, HW interfaces or SW stacks
> Acceleration platforms provides HW and SW APIs to ingrate your code

> Focus on the application, not on the implementation details

Page 8

© Copyright 2018 Xilinx 8 XI I_INX

'Software Programmability: FPGA Development in C/C++

C/C++ code C/C++
Wlth [XXX X) : : oooooo b Or
OpenCL API calls : - OpenCL C
x86 CPU : EPGA

Hv A Iv d Jser
.OSt. coeler ate Application

Application Functions Code

Acceleration API AXI Interfaces Xilinx
Acceleration

Runtime and Drivers DMA Engine Platform

PCle
© Copyright 2018 Xilinx 8 XI I_INX

Page 9

'Using C, C++ or OpenCL to Program FPGAs

loop main:for (int Jj=0;Jj<NUM SIMGROUPS; j+=2)

> Xilinx pioneered C to FPGA compilation technology (aka “HLS”) in 2011

> No need for low-level hardware description languages

loop share:for (uint k=0;k<NUM SIMS;k++) {
loop parallel:for (int 1i=0;i<NUM RNGS;i++)
mt rng[i].BOX MULLER (&numl[i] [k], &num2[i] [k], ratio4, ratio3);

float payoffl = expf(numl[i] [k])-1.0f;
float payoff2 = expf(num2[i] [k])-1.0f;
if (numl[1] [k]>0.0f)

pCalll[i] [k]+= payoffl;

else
pPutl[i] [k]-=payoffl;
if(num2[i] [k]1>0.0f)
pCall2[i] [k]+=payoff2;
else

pPut2[i] [k] -=payoff2;

{

{
]

> Enables “Software Programmability” of FPGAs

>>10

© Copyright 2018 Xilinx

& XILINX

' High-Performance FPGA Applications: Think “Parallel”

> Data-level parallelism
>> Processing different blocks of a data set in parallel

> Task-level parallelism

>> Executing different tasks in parallel
>> Executing different tasks in a pipelined fashion m m
> Instruction-level parallelism
!

>> Parallel instructions (superscalar)
>> Pipelined instructions

> Bit-level parallelism
>> Custom word width

© Copyright 2018 Xilinx 8 XI I_INX

'Task-LeveI Parallelism

for (int i=0; i<N; i++)
{

#pragma HLS DATAFLOW
func? () ;

time

> Create custom dataflow pipelines
> Multiple tasks executing simultaneously

> Streaming programming paradigm

>>12 © Copyright 2018 Xilinx 8 X”_INX

' Instruction-Level Parallelism

for (int 1=0; 1i<N; 1i++)
{

acc += A[i] * B[i];
}

> Create custom datapaths within each task
> Execute hundreds of operations in parallel

> Automatic or user guided compiler optimization

>>13 © Copyright 2018 Xilinx 8 X”_INX

'Learn More about Parallel Programming for FPGAS

> Parallel Programming for FPGAs
Parallel Programming for FPGAS

Tha HLS Book
> Open-source book
> Teaches HW and SW developers how to . s

efficiently program FPGAs using high-level
synthesis (HLS)

> Freely available from: http://hisbook.ucsd.edu

>>14 © Copyright 2018 Xilinx 8 X”_INX

http://hlsbook.ucsd.edu/

'Follow the Guide!

> Expert system built-in the FPGA compiler

> Analyzes results; provides actionable
feedback on how to improve the design

> Explicit messages, links to detailed
explanation and solutions

> Helps developers achieve better results

>> 15

Q s 16 Warnings +f 12 Met

Name

DDR_BANK_CONNECTIONS #1
DDR_BANK_READ_TRANSFER_UTIL #1
DDR_BANK_READ_TRANSFER_UTIL #2
DDR_BANK_WRITE_TRANSFER_UTIL #1
KERNEL_COUNT #1
KERNEL_COUNT #2
KERNEL_READ_TRANSFER_SIZE #1
KERNEL_READ_TRANSFER_SIZE #2
KERNEL_WRITE_TRANSFER_SIZE #1
KERNEL_READ_TRANSFER_UTIL #1
KERNEL_READ_TRANSFER_UTIL #2
KERNEL_WRITE_TRANSFER_UTIL #1
KERNEL_PORT_DATA_WIDTH #1
KERNEL_PORT_DATA_WIDTH #2
DDR_BANK_CONNECTIONS #2
DDR_BANK_CONNECTIONS #3

+ DDR_BANK_CONNECTIONS #4

 HOST_WRITE_TRANSFER_SIZE #1

 CU_UTIL#1

+ OVERUSED_CUS #1

 KERNEL UTIL #1

+ HOST_READ_TRANSFER_SIZE #1

 KERNEL_READ_TRANSFER_AMOUNT_MAX #1

 UNUSED_CUS #1

+ KERNEL_READ_TRANSFER_AMOUNT_MIN #1

+ HOST_MIGRATE_MEM #1

« CU_UTIL#2

+ DEVICE_UTIL#1

Design Feedback

© Copyright 2018 Xilinx

| Hide All || filter2d: filter2d-Default | &

Expects Actual
>0 0

> 5.000 0.432
> 5.000 0.169
> 5.000 0.432
>1 1

>1 1

>0.512 0.128
>0.512 0.016
>0.512 0.128
> 5.000 0.432
> 5.000 0.169
> 5.000 0.432

=512 128
=512 128
>0 0
>0 0
>0 2

> 4,096 5.058

> 10.000 196.714
<16 1
=100.000 : 600.000
> 4.096 9.216

< 2.000 1.267

§. Vivado Design ... x

Details

DDR bank 3 was used by 0 ports.

DDR bank 0 read utilization was 0.432% on device xilinx_kcu1500_dynamic_5_0-0.
DDR bank 1 read utilization was 0.169% on device xilinx_kcu1500_dynamic_5_0-0.
DDR bank 1 write utilization was 0.432% on device xilinx_kcu1500_dynamic_5_0-0.
Compute unit Filter2DKernel_1is called 3 timel(s).

Compute unit Filter2DKernel_1 is called 3 time(s).

Kernel average read size on port Filter2DKernel_1/m_axi_gmem0 was 0.128 KB.
Kernel average read size on port Filter2DKernel_1/m_axi_gmem1 was 0.016 KB.
Kernel average write size on port Filter2DKernel_1/m_axi_gmem1 was 0.128 KB.
Kernel read utilization on port Filter2DKernel_1/m_axi_gmem0 was 0.432%.
Kernel read utilization on port Filter2DKernel_1/m_axi_gmem1 was 0.169%.
Kernel write utilization on port Filter2DKernel_1/m_axi_gmem1 was 0.432%.

Port Filter2DKernel_1/m_axi_gmem0 has a data width of 128.

Port Filter2DKernel_1/m_axi_grmem1 has a data width of 128.

DDR bank 1 was used by 0 ports.

DDR bank 2 was used by 0 ports.

DDR bank 0 was used by 2 ports.

Host write average size was 5.058 KB across 6 transfers.

Compute unit Filter2DKernel_1 was utilized 196.714% of the device time.

Kernel Filter2DKernel required 1 compute unit call(s).

Kernel Filter2DKernel: global size: 1, local size: 6.

Host read average size was 9.216 KB across 3 transfers.

Total kernel read of 0.038448 MB on xilinx_kcu1500_dynamic_5_0-0 was 126.690% of host data.

Design Guidance Report - Mozilla Firefox (on xsjrdevi118)

Design Guidance ... * | + ta.

5| file:///proj/xsjhdstaffl/herver/_SDAccel/bash/20182/gui_test2/pril/sre/ ear + 0 =

Design Guidance Report

Copyright Copyright 1986-2018 Xiknx, Inc. All Rights Reserved

Toal Version . (liné4) Buikd 0

Date Mon May 7 18:26:20 2018

Host xsjrdevi118 running 64-bit Fed Hat Enterprise Linux Workstation release 6.5 (Santisgo)

Command xoce --compile kmi_vadd.cl --platiorm xilink_kcu1500_dynamic_S_0 --xp param:compiler. useScxRuleService=true -5

Table of Contents

1 REPORT SUMMARY

Violations found: 1

Rule Specs Violatea: 1

2 VIOLATION DETAILS

HTML Report
& XILINX.

'Visit www.Xilinx.com/sdaccel to Get Started !

Getting Started Essentials 3

= Download SDAccel

@ Try a tutorial (Github)
@ Browse the collection of SDAccel examples (Github)
Applications Products Developer Zone Support ™ Browse the documentation
Xilinx - Adaptable. Intelligent. > Developer Zone » SDAccel Development Environment
; @ Ask a question, find an answer (Forums)
Develop, Debug"and Opti
FPGA-Acceleraied Applic:
\mrn.)ducimgSDAccel Development et Started 1 Get StartEd n the ClOUd Wlth -*- Run Deve|0per LabS, on-demand
Environment AWS F"I
@ 5 steps guide to start with C/C++ kernels (Github)
@ 5 steps guide to start with RTL kernels (Github)
Get Started in the Cloud with @ Try the FPGA Developer Program

Nimbix

Learn and practice how to accelerate applications with FPGAS
© Copyright 2018 Xilinx 8 XI I_INX

'Summary - “Different” doesn’t mean “Difficult”

> FPGA “Software Programmability” is now a reality
>> Develop FPGA-accelerated applications entirely in C/C++

> FPGASs excels at high-throughput streaming applications
>> Think “parallel”, adopt “dataflow” programming model

> Off-the-shelf platforms make it easy to start and deploy at scale
>> No need to develop custom card, hardware interfaces or software stacks

>> 17 © Copyright 2018 Xilinx 8 X”_INX

Adaptable.
Intelligent.

22 XILINX

