
© Copyright 2018 Xilinx

Sergei Storojev

Staff Tools and Design Methodology Application Engineer

“Different” doesn’t mean “Difficult”: 

FPGA Programming Demystified



© Copyright 2018 Xilinx

The Case for FPGAs in Financial Computing

Real-Time Risk Dashboard 89x
https://www.xilinx.com/products/boards-and-kits/alveo/applications/real-time-risk.html

Standard Initial Margin Model 

Calculation
10x - 50x

https://www.xilinx.com/products/boards-and-kits/alveo/applications/standard-initial-margin-model.html

High Performance Monte Carlo 

Option Pricing Simulation
42x - 540x

https://github.com/KitAway/FinancialModels_AmazonF1

NOT STAC BENCHMARKS



© Copyright 2018 Xilinx

Customizable Architectures – The FPGA Advantage

FPGAs

˃ High throughput, low power, high efficiency

˃ Flexible, fully customizable architecture

˃ Developer adapts the architecture to the program

CPUs and GPUs

˃ High speed, high power, low efficiency

˃ Fixed instruction set and rigid memory hierarchy

˃ Developer adapts the program to the architecture



© Copyright 2018 Xilinx

FPGAs – The Ultimate Parallel Processing Device

˃ No predefined instruction set or underlying architecture

˃ Developer customizes the architecture to his needs
Custom datapaths

Custom bit-width

Custom memory hierarchies

˃ Excels at all types of parallelism
Deeply pipelined (e.g. Video codecs)

Bit manipulations (e.g. AES, SHA)

Wide datapath (e.g. DNN)

Custom memory hierarchy (e.g: Data analytics)

˃ Adapts to evolving algorithms and workload needs



© Copyright 2018 Xilinx

FPGA Accelerator Cards That Fit Your Performance Needs

˃ Alveo U200

18.6 Peak INT8 TOPs

77GB/s DDR Memory Bandwidth

31TB/s Internal SRAM Bandwidth

892,000 LUTs

˃ Alveo U250

33.3 Peak INT8 TOPs

77GB/s DDR Memory Bandwidth

38TB/s Internal SRAM Bandwidth

1,341,000 LUTs

˃ Deploy in the Cloud or On-Premises



© Copyright 2018 Xilinx

Sounds Great! But…

>> 6

HW languages are low-level and very difficult

I know nothing of hardware programming 

concepts

How can I even get software applications to 

interact with FPGAs?



© Copyright 2018 Xilinx

FPGA Solutions Have Come a Long Way

>> 7

You can actually use C, C++ or OpenCL to 

program FPGAs

Familiar parallel programming concepts apply to 

FPGA development

Off-the-shelf platforms make SW acceleration 

with FPGAs very easy



© Copyright 2018 Xilinx

Off-the-shelf Platforms Simplify FPGA Acceleration

˃ No need to develop cards, HW interfaces or SW stacks

˃ Acceleration platforms provides HW and SW APIs to ingrate your code

˃ Focus on the application, not on the implementation details 

Page 8

PCIe

x86 CPU

Host 

Application

Runtime and Drivers

Acceleration API

FPGA

Accelerated 

Functions

DMA Engine

AXI Interfaces

User

Application

Code

Xilinx 

Acceleration 

Platform



© Copyright 2018 Xilinx

Software Programmability: FPGA Development in C/C++

Page 9

PCIe

x86 CPU

Host 

Application

Runtime and Drivers

Acceleration API

FPGA

Accelerated 

Functions

DMA Engine

AXI Interfaces

User

Application

Code

Xilinx 

Acceleration 

Platform

C/C++ code 

with 

OpenCL API calls

C/C++ 

or 

OpenCL C 



© Copyright 2018 Xilinx

Using C, C++ or OpenCL to Program FPGAs

˃ Xilinx pioneered C to FPGA compilation technology (aka “HLS”) in 2011

˃ No need for low-level hardware description languages

˃ Enables “Software Programmability” of FPGAs

>> 10

loop_main:for(int j=0;j<NUM_SIMGROUPS;j+=2) {

loop_share:for(uint k=0;k<NUM_SIMS;k++) {

loop_parallel:for(int i=0;i<NUM_RNGS;i++) {

mt_rng[i].BOX_MULLER(&num1[i][k],&num2[i][k],ratio4,ratio3);

float payoff1 = expf(num1[i][k])-1.0f;

float payoff2 = expf(num2[i][k])-1.0f;

if(num1[i][k]>0.0f)

pCall1[i][k]+= payoff1;

else

pPut1[i][k]-=payoff1;

if(num2[i][k]>0.0f)

pCall2[i][k]+=payoff2;

else

pPut2[i][k]-=payoff2;

}

}

}

FPGACompile



© Copyright 2018 Xilinx

High-Performance FPGA Applications: Think “Parallel”

˃ Data-level parallelism

Processing different blocks of a data set in parallel

˃ Task-level parallelism

Executing different tasks in parallel

Executing different tasks in a pipelined fashion

˃ Instruction-level parallelism

Parallel instructions (superscalar)

Pipelined instructions

˃ Bit-level parallelism

Custom word width

funcCfuncB

funcA

funcD



© Copyright 2018 Xilinx

Task-Level Parallelism

˃ Create custom dataflow pipelines

˃ Multiple tasks executing simultaneously

˃ Streaming programming paradigm

>> 12

for (int i=0; i<N; i++)

{

#pragma HLS DATAFLOW

func1();

func2();

func3();

}

Dataflow

func1 func2 func3

func1 func2 func3

func1 func2 func3

time



© Copyright 2018 Xilinx

Instruction-Level Parallelism

˃ Create custom datapaths within each task

˃ Execute hundreds of operations in parallel

˃ Automatic or user guided compiler optimization

>> 13

for (int i=0; i<N; i++)

{

acc += A[i] * B[i];

}

×

×

×

×

+

+

+Unroll



© Copyright 2018 Xilinx

Learn More about Parallel Programming for FPGAs

˃ Parallel Programming for FPGAs

˃ Open-source book

˃ Teaches HW and SW developers how to 

efficiently program FPGAs using high-level 

synthesis (HLS)

˃ Freely available from: http://hlsbook.ucsd.edu

>> 14

http://hlsbook.ucsd.edu/


© Copyright 2018 Xilinx

Follow the Guide!

˃ Expert system built-in the FPGA compiler

˃ Analyzes results; provides actionable 

feedback on how to improve the design

˃ Explicit messages, links to detailed 

explanation and solutions

˃ Helps developers achieve better results

>> 15

HTML Report

Design Feedback



© Copyright 2018 Xilinx

Visit www.xilinx.com/sdaccel to Get Started !

Learn and practice how to accelerate applications with FPGAs



© Copyright 2018 Xilinx

Summary - “Different” doesn’t mean “Difficult”

˃ FPGA “Software Programmability” is now a reality
Develop FPGA-accelerated applications entirely in C/C++

˃ FPGAs excels at high-throughput streaming applications
Think “parallel”, adopt “dataflow” programming model

˃ Off-the-shelf platforms make it easy to start and deploy at scale
No need to develop custom card, hardware interfaces or software stacks

>> 17



© Copyright 2018 Xilinx

Adaptable.

Intelligent.


