

Approaching HF Radio With Your Eyes Wide Open

Tamir Ostfeld, Deputy CEO and COO

The content of this presentation is proprietary information of Raft Technologies. It is not intended to be distributed to any third party without the written consent of Raft Technologies

ABOUT ME

Tamir Ostfeld Deputy CEO & COO, Raft Technologies

- 25 years of experience leading development in Networking and Connectivity groups
- With Raft since 2017 early HF trials
- Overseeing network development R&D and Ops

HF-BASED ULTRA LOW LATENCY WIRELESS NETWORK

Let's talk about HF performance:

- What powers it?
- What performance can you expect?
- How far can we get (latency, distance, bitrate, uptime)?

SKYWAVES (HF / SHORTWAVE RADIO) TRAVEL LONG DISTANCES AT THE SPEED OF LIGHT

Skywaves propagate back from the atmosphere, acting as a mirror

HF Radio Transmitter

Ionosphere 50-200Km

Receiver

HF ADOPTION HAS STARTED

Deutsche Börse cross-correlation analysis

Showing trades in Frankfurt / following trade events in Chicago

Stefan Schlamp • 1st Head of Content Development & Management 2mo • 🕲

Having **#cmegroup** and **#eurex #marketdata** on Deutsche Börse's A7 Analytics Platform helps reveal the footprints of shortwave trading in the **#histogram** of reaction times between trades on **#cme** and **#eurex**.

...

The lowest "classical" (#microwave + dedicated trans-Atlantic #fiber) latency is approximately 37 ms. The data, however, shows the shift towards shortwave radio (high-frequency, "HF") of #hft trading participants. This technology (at very low bandwidths) provides a 9 ms #latency advantage.

Read more...

XCME/XEUR Cross-Venue Reactions

REFRACTIVE EFFECTS OF THE IONOSPHERE (LAYER CAKE)

REFRACTIVE EFFECTS OF THE IONOSPHERE

Signals take different paths

7 RAFT Technologies

Plasma Frequency (MHz)

CYCLES DEFINING HF SERVICE AVAILABILITY

DAY-NIGHT CYCLE IONOSPHERE LAYERS CHANGE

B RAFT Technologies

1D

DAY-NIGHT CYCLE IONOSPHERE LAYERS CHANGE

Date: June 15, 2022

Just before dawn, "battery drains out"

10 RAFT Technologies Not STAC Benchmarks

1D

RAFT Technologies

SEASONAL CYCLE DAYLIGHT HOURS CHANGE

The Earth Axial tilt ≈23 Degrees

SEASONAL CYCLE DAYLIGHT HOURS CHANGE

SUN Č

December

June

RAH Technologies

SEASONAL CYCLE DAYLIGHT HOURS CHANGE

day

Summer

day

Not STAC Benchmarks

SOLAR CYCLE THE SUN'S MAGNETIC FIELD

Sunspots – the more the better

SOLAR CYCLE THE SUN'S MAGNETIC FIELD

There's a good tailwind for HF

15 **RAFT**_{Technologies} **Not STAC Benchmarks**

HF NETWORK KEY PERFORMANCE INDICATORS

Latency	•	HF delivers the shortest latency ever	24h
Capacity		0.5-1.2 Kbps	20
Goodput	•	75-95%	12
Uptime	•	Near 24h, summertime cross-Atlantic	8
Error Rate	•	In the 10EXP-5 zone	

RAFT Technologies Not STAC Benchmarks

WEATHER FORECASTS – IN SPACE, NOT ON EARTH

Positive

- Active Regions
- Sunspots

Negative

- Solar-Flux
- X-Rays
- A master indicator: K-Index

HF CHALLENGES RECEIVING A SIGNAL

Man-made noise

- Crowded spectrum
- Narrow-band noise
- Chirp-type noise

Your own "noise"

- Multipath
- Long path / 2nd time around

EXAMPLE: CHICAGO TO TOKYO LINK

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

19 **RAFT** Technologies

EXAMPLE: CHICAGO TO TOKYO LINK

- Distance: 10,125 Km
- No repeater (!)
- End-to-end latency (colo to colo): below 50ms...

CONTINUOUS INCREASED PERFORMANCE

Developed procedures for link mgmt.

AI-powered link monitoring and control

HF NETWORK KEY PERFORMANCE INDICATORS

Current focus

Latency	•	Pushing toward the physical limit
Capacity	•	x10
Goodput	•	75-95%
Uptime	•	Near 24h year-round
Error Rate	•	In the 10EXP-5 zone

Q&A

Thank you!

"Any sufficiently advanced technology is indistinguishable from magic"

Arthur C. Clarke

ne content of this presentation is proprietary information of Raft Technologies. is not intended to be distributed to any third party without the written consent of Raft Technologies.

a bit faster