
You’re probably leaving 

some C++ performance 

“on the table”
Thomas Rodgers

rodgert@twrodgers.com

FCA Design Group

mailto:rodgert@twrodgers.com


Background

• I’ve been a C++ developer since 1989

• The last 20+ years in Finance IT

• Member of the ISO C++ Standards Committee

• SG1 - Concurrency & Parallelism Working Group

• SG14 - Low Latency/Game Dev Working Group



Today’s talk

• Cover some common performance ‘gotchas’ with C++

• Cover some things the C++ Committee is working on to make 

Finance Developer’s lives easier 



Disclaimer

• This is not a talk on system tuning

• This talk is not strictly geared at HFT

• All of these topics go fairly deep

• This will be at best be a high level introduction to these concepts



An Abstract Machine?

• C and C++ are specified in terms of an Abstract Machine

• simplest imaginary computer that can execute a program in the 

source language

• Talks about addressing, bytes, words, etc.



An Abstract Machine?

• Omits many details of real machines 

• Does not talk about things like caches, NUMA, etc.

• The C++ Standard states only that -

• “Conforming implementations are required to emulate the 

observable behavior of the abstract machine”



Fundamentals - Alignment

• The view of memory, presented by the C++ abstract machine is access at 

byte-granularity 

• e.g. char c = foo[17]

• Intel CPUs impose a slight penalty for unaligned accesses

• Many others (RISC) architectures, simply abort execution on unaligned access

• Compilers for these architectures must generate extra code to give the 

“illusion” of byte-granularity access.



Fundamentals - Alignment

• Compilers align data on some multiple of the underlying hardware’s 

word size

• typically 4 or 8 bytes

• operator new() also returns aligned data

• by default, on Linux, pointers are aligned on 16-byte boundaries



Fundamentals - Alignment

• CPU’s view of data access is at cache-line granularity

• 64B on Intel

• Depending on where data falls with respect to the cache line 

boundary, 1-2 references to the next level in the memory hierarchy 

may be required

• If two cores end up mapping the same 64B to a cache line, 

modifying potentially different data structures, we have what’s 

known as “false sharing”



Fundamentals - Alignment

• Safe to assume 64B cache line size for current generation Intel Hardware

• Other CPUs types may have 32B, 64B, or 128B line sizes



Fundamentals - Alignment

• C++17 provides two new compile-time determined constants to make this 

more portable -

• std::hardware_destructive_interference_size

• Minimum offset to prevent false line sharing

• std::hardware_constructive_interference_size

• Maximum width to promote true line sharing



Fundamentals - Alignment

struct keep_apart {

alignas(std::hardware_destructive_interference_size) std::atomic<int> foo;

alignas(std::hardware_destructive_interference_size) std::atomic<int> bar;

};

struct keep_together {

std::atomic<int> foo;

std::array<char, 16> bar;

};

static_assert(sizeof(keep_together) <=     std::hardware_constructive_interference_size);



Fundamentals - Alignment

• Compilers will correctly respect alignas() for stack locals

• But what about dynamic allocations?

• Can use posix_memalign() to specify a different alignment

• C++17 introduced std::aligned_alloc() as a portable alternative

• Unfortunately these options only deal with returning aligned blocks 

of memory, not objects



Fundamentals - Alignment

template<typename T, typename... Args>

unique_ptr<T> make_aligned(Args&&… args) {

if (auto p = std::aligned_alloc(

std::hardware_destructive_interference_size, sizeof(T))) {

return new (p) T(std::forward<Args>(args)...);

}

throw std::bad_alloc();

}



Data Structure Choice

• Simple exercise -

• Load up a std::map<> with a largish amount of randomly 

generated data

• Load up a std::vector<> with the same randomly generated 

data, sort the vector by the same key the map is ordered by

• Both look ups have the same ϴlgn time complexity

• Time 1 million random lookups in each structure

• Which one is faster in terms of absolute wall clock time?



Data Structure Choice

• The vector implementation is always faster.



Why?

• std::map<K, V>

• Typically implemented as a Red-Black tree

• Nodes are not guaranteed to be adjacent in memory

• At least 5 words of data per node (parent, left, right pointers, key, and 

value)

• The “color” value is usually implemented by stealing a bit from the 

parent pointer



Why?

• std::vector<T>

• Typically implemented as three pointers

• front, back, end-of-allocated storage

• Data is laid out contiguously

• Versus std::map<> a sorted vector need only store the Key and Value



Prefer Array-Shaped Data

• If modifications are infrequent, a sorted vector<> will always 

outperform map<> or set<>

• Even inserts into a sorted vector<> are not as expensive as you 

might expect

• Array-Shaped types are much more friendly to the CPU’s pre-fetcher 

and exploit the relatively high bandwidth of DRAM vs. DRAM’s random 

access latency

• Node based types (set<>, map<>, list<>, etc.) only make sense if you 

need their iterator guarantees

• Deletes do not invalidate outstanding iterators



Valid C++

#include <vector>

#include <cstdlib>

int compare(void const* a, void const* b) {

return ( *(int*)a - *(int*)b );

}

…

vector<int> ints;

// load ints up with some data...

qsort((void*) ints.data(), ints.size(), 

sizeof(int), compare);

…



Valid C++

#include <vector>

#include <algorithm>

…

vector<int> ints;

// load ints up with some data...

sort(std::begin(ints), std::end(ints));

…



This one is always faster

#include <vector>

#include <algorithm>

…

vector<int> ints;

// load ints up with some data...

sort(std::begin(ints), std::end(ints));

…



Why?

• qsort type erases the element type to void*

• std::sort preserves type information

• qsort takes the comparison function by function pointer

• std::sort uses the definition of < and == for the supplied type

• std::sort almost always inlines comparisons



Don’t throw away type 

information
• Use the algorithms defined in <algorithm> and <numeric>

• Generally optimal and cover a broad range of functionality

• Preserve type information and are more conducive to inlining 

than similar C-style APIs, leading to better overall optimization

• Learning these algorithms is time well spent

• See also - Sean Parent’s ‘C++ Seasoning talk’

• https://channel9.msdn.com/Events/GoingNative/2013/Cpp-

Seasoning

https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning


Call optimization

• In general, function pointers are “poison” to an optimizer

• The compiler must invoke the function and cannot inline it

• The call to qsort’s comparison function is the primary 

performance bottleneck

• Same is true, in general, of virtual methods and inheritance

• Unless, the compiler can statically prove there’s only ever one 

concrete derivation, aka de-virtualization



Call optimization

• Functions or methods defined in separate translation units are not 

generally inlined either

• The typical pattern of .h/.cpp per class proliferates method 

declarations which are not generally considered for inlining



Use Link-Time Optimization

• LTO (-flto) allows cross-translation unit optimizations, including -

• Method/function inlining

• De-virtualization

• Cross function data-flow analysis



Common Idiom for calling

C APIs
int some_api_function(int fd, char* buf, int* buf_size);

string get_some_value(int fd) {

string res;

int sz = 0;

auto rc = some_api_function(fd, nullptr, &sz);

if (rc < 0) {

if (errno != E2BIG)

throw system_error(errno, system_category());        

res.resize(sz);

rc = some_api_function(fd, &res.front(), &sz);

}

if (rc < 0)

throw system_error(errno, system_category());

return res;

}



Common Idiom for calling

C APIs

• Does the string::resize() call in the example allocate?



Common Idiom for calling

C APIs

• Does the string::resize() call in the example allocate?

• Maybe



SSO

• All common implementations of C++’s string implement 

the “Small String Optimization”

• More generally the “Small Space Optimization”



SSO

• Comes from the following observations

• Strings are a commonly used type and frequent allocations 

are expensive

• Many strings are short

• We can, at a minimum, use the space normally occupied by 

the string’s data pointer to hold a string whose length is <= 

sizeof(char*) - 1

• Embedding space for the common case provides better 

data locality



SSO

• Most Standard Library implementations set aside a larger 

buffer

• Unfortunately -

• The exact size of this this is implementation defined

• Not exposed in any portable way

• Only safe to assume it’s sizeof(char*) - 1



SSO for the rest of us

• Can we get more control over this small space 

optimization?



SSO for the rest of us

#include <boost/container/small_vector.hpp>

using namespace boost::container;

constexpr auto small_buf_size = 256;

using buffer_t = small_vector<char, small_buf_size>;

string_view get_some_value2(int fd, buffer_t& buf) {

int sz = small_buf_size;

auto rc = some_api_function(fd, &buf.front(), &sz);

if (rc < 0) {

buf.resize(sz);

rc = some_api_function(fd, &buf.front(), &sz);

}

if (rc < 0)

throw system_error(errno, system_category());

return string_view(buf.data(), buf.size());

}



small_vector

• Allows user to specify some expected small size before 

allocation occurs

• The most used data structure in clang

• Boost has a version

• Also has static_vector, where you know up front the 

exact maximum size

• Under consideration for inclusion into C++20



Return by value

• Pre-C++ 17 most compilers implement the Return Value 

Optimization

• On return from the called function, the result is already 

in the right place in the caller’s stack frame

• Doing std::move(res) out of the called function is 

potentially a performance pessimization

• Some work to move is more work than doing nothing



Return by value

• C++17 introduces guaranteed copy elision

• Mandates RVO

• Elides copies in the common case of passing a 

temporary by value

• Elides copies when throwing and catching exceptions 

by value



Pass Small Types by Value

• If a type is small (typically <= 2-3 machine words in size), 

and is trivially copyable, pass by value

• Compilers will pass the value in registers, rather than on 

the stack

• Even if the argument is not enregistered, the resulting 

generated code is as if it had been passed by const& for 

trivial types



Pass Small Types by Value

price_t vwt_price(trade t) 

{ return t.price * t.volume; }

// Dissasembly

vwt_price(trade): # @vwt_price(trade)

mov eax, psi

imul rax, rdi

ret



Pass Small Types by Value

price_t vwt_price2(trade const& t) 

{ return t.price * t.volume; }

// Dissasembly

vwt_price2(trade const&): # @vwt_price2(trade const&)

mov eax, dword ptr [rdi + 8]

imul rax, qword ptr [rdi]

ret



Pass Small Types 

By Value 

• True of many standard library types

• Most iterators, string_view, etc.

• But, not shared_ptr<>

• Copy must perform an atomic increment

• ~100x more expensive than a non-atomic increment



Lock free isn’t cheap

• C++ 11 (and C11) introduced a standard memory model

• Sequentially Consistent for Data-Race Free Programs

• Supporting library of portable atomic types and 

operations

• There is a lot of enthusiasm for lock-free algorithms

• However the C++ Standard does not ship any common 

lock free data-structures (yet)



Lock free isn’t cheap

• Several possible additions for C++20

• Concurrent queues

• Split counters

• atomic_shared_ptr<>

• RCU - Read Copy Update

• Hazard Pointers



Lock free isn’t cheap

• On x86 all lock prefixed instructions generate cache coherency 

traffic

• Instruction latency measured in 10’s - 100’s of clock cycles

• lock prefixed instructions preclude superscalar/out of order 

execution by the ALU

• lock prefixed instructions can manipulate at most 128 bits of 

data atomically

• lock prefixed instructions can manipulate at most a single 

memory location atomically



Lock free isn’t cheap

• Implementations are limited by underlying hardware to 

manipulating primitive types

• You can’t just stick any old class into a 

lock_free::queue<T>



Lock free isn’t cheap

• Many lock-free algorithms are node based

• e.g. ‘Michael & Scott’ lock free queues 

• basis for Boost’s lock free queues, as well as 

java.lang.ConcurrentQueue

• Require allocations

• not guaranteed to be wait or pre-emption free

• Have poor locality of reference



How bad are mutexes, 

really?

• Common complaint is the cost of preemption by the 

operating system (milliseconds of latency)

• naive Compare-and-Swap (CAS) spin lock will preclude 

this preemption

• Generates substantial cache-coherency traffic without 

techniques already in use by most mutex 

implementations (e.g. exponential backoff)



std::mutex

• Acquisition is attempted via simple compare-and-swap operation to 

set some low-order bits in a pointer to the operating system’s lock 

structure

• Implementation will spin for a while in user space, on failed 

acquisition

• Includes some form of backoff, to reduce cache-coherency traffic

• minimizes chances of preemption on a lightly contended lock

• When all else fails, delegates to the host operating system



Other mutex types

• Boost includes both shared_mutex and upgrade_mutex

• C++17 standardizes shared_mutex

• possibly useful in read-mostly scenarios where readers 

can access data race free, but need exclusion during 

updates

• If updates are infrequent, may not result in preemption

• Somewhat un-intuitively, often more expensive than a 

plain mutex


