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Data analytics is the greatest value driver in technology

Financial services need insights from data

• Exploit market data for financial modeling, etc.

High performance big data analytics is crucial

• Democratize HPC for data scientists
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Motivation

http://www.businesscomputingworld.co.uk/



Scripting languages like Python are productive but slow and serial

Big data frameworks (Hadoop/Spark) are hard to use and slow

• High overhead runtime libraries

• Not based on parallel computing fundamentals

High performance requires low-level programming

• Not practical for interactive workflows of data scientists and their expertise
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Productivity-Performance Gap

python.org

llnl.org
isocpp.orgInfoobjects.com



5

Motivation
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High performance/scalability for analytics/ML/AI with little effort

• Minimal changes to scripting source code

Compiler optimization and parallelization

• Scripting program → efficient parallel binary

High Performance Analytics Toolkit (HPAT)

• Python (previously Julia)
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Overview

https://github.com/IntelLabs/HPAT.jl

python.org

https://github.com/IntelLabs/hpat

https://github.com/IntelLabs/HPAT.jl
https://github.com/IntelLabs/hpat
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HPAT Python Example

@hpat.jit

def logistic_regression(iterations):

f = h5py.File("lr.hdf5", "r")

X = f['points'][:]

Y = f['responses'][:]

D = X.shape[1]

w = np.ones(D) - 0.5

for i in range(iterations):

w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)

return w

33x speedup 

on 4 nodes

Example launch command:

mpirun -n 144 python logistic_regression.py

Numpy code is implicitly data-parallel
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Data Parallelism Extraction

1Anderson et al. “Parallelizing Julia with a Non-invasive DSL”, ECOOP’17

D = A * B + C

parfor i=1:n

t[i]=A[i]*B[i]

parfor i=1:n

D[i]=t[i]+C[i]

parfor i=1:n

t[i]=A[i]*B[i]+C[i]

Recognize parallelism

Fuse loops
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Spark Workflow HPAT Workflow

Python code Spark API code

Spark Runtime

Python code

Cluster/cloud

Parallel binary (MPI)

Cluster/cloud

Rewrite by programmer

Compile by HPAT

Driver

Executor 1 …

…

Rank 0 …Rank 1 Rank N-1

Driver

Executor N-1Executor 0



10

Performance Evaluation
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20x-256x speedup of HPAT vs Spark

Cori at NERSC/LBL

64 nodes (2048 cores)

Amazon AWS

4 nodes c4.8xlarge (144 vCPUs)

370x-2000x speedup of HPAT vs Spark

HPAT is within 2-4x MPI/C++
HPAT Julia used, Python will be similar

Totoni et al. “HPAT: High Performance Analytics with Scripting Ease-of-Use”, ICS’17
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Pandas Example

@hpat.jit(locals={'s_open': hpat.float64[:], …})

def intraday_mean_revert():

f = h5py.File("stock_data.hdf5", "r"); …

for i in prange(nsyms):

symbol = sym_list[i]

s_open = f[symbol+'/Open'][:]; …

df = pd.DataFrame({'Open': s_open, …})

df['Stdev'] = df['Close'].rolling(window=90).std()

df['Moving Average'] = df['Close'].rolling(window=20).mean()

df['Criteria1'] = (df['Open'] - df['Low'].shift(1)) < -df['Stdev']

df['Criteria2'] = df['Open'] > df['Moving Average']

df['BUY'] = df['Criteria1'] & df['Criteria2']

df['Pct Change'] = (df['Close'] - df['Open']) / df['Open']

df['Rets'] = df['Pct Change'][df['BUY'] == True]

n_days = len(df['Rets'])

res = np.zeros(max_num_days)

if n_days:

res[-n_days:] = df['Rets'].fillna(0)

all_res += res

100x speedup 

on 36 cores

http://www.pythonforfinance.net/2017/02/20/intraday-stock-mean-reversion-trading-backtest-in-python/

Explicit loop parallelism

http://www.pythonforfinance.net/2017/02/20/intraday-stock-mean-reversion-trading-backtest-in-python/


Numpy:

• Element-wise operations: +, /, ==, exp, log, sqrt, …

• Array creation: zeros, ones_like, random, normal, …

• Others: sum, prod, dot, …

Pandas:

• Column access, and operations: df.A, df[‘A’], df.A.std()

• Filter: df[df.A > .5]

• Rolling windows: df.A.rolling(window=5).mean()

Parallel loop:

for i in prange(n): 

s += A[i]**2
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HPAT Operations



Input code to HPAT should be statically compilable (type stable)

• Dynamic code example:

• Rare in analytics
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Variable Type Limitation

if flag1:

a = 2

else:

a = np.ones(n)

if isinstance(a, np.ndarray):

doWork(a)

if flag2:

f = np.zeros

else:

f = np.ones

b = f(m)



Data Frame column accesses should be static

• Dynamic code example:

• Refactor to:
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Pandas Limitation

for i in range(5):

A += df['c'+str(i)]

A += df['c0']

A += df['c1']

A += df['c2']

A += df['c3']

A += df['c4']



Compiler approach superior to library approach for analytics

HPAT bridges productivity-performance gap

• Compiles Python programs to efficient parallel binaries

• Available on GitHub: https://github.com/IntelLabs/hpat
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Summary

Higher performanceEasier to use

Simpler infrastructureBroader functionality

https://github.com/IntelLabs/hpat
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