
Streaming to humans:
Can open source hack it?





Getting data to 
people matters



Receive data in real-time1

2

3

4

Consume & produce data

See tables (& widgets)

What do people want? 

Be first class citizens in the data system



Those needs 
catalyze today's 

discussion 

● Distill requirements

● Review OSS options

● Itemize unsolved problems

● Describe solutions



Technical needs 

1. Browser compatibility
2. Tables that don’t suck
3. A ubiquitous backplane
4. Efficient data packaging



Browser Compatibility

● Easy-access

● Platform-independent

● Resource-light

● Mobile-friendly



Tables that don’t suck…
… support real-time data

… support new tables & schema on-the-fly

… support widgets



Tables that don’t suck…
… support real-time data

… support new tables & schema on-the-fly

… support widgets



A ubiquitous backplane

● Reduce costs

● Accelerate interoperability

● Satisfy client apps

● Support bi-directionality



● Give client apps control

● Aspire to zero copy

● Package data well

Efficient data consumption



Contenders for transport
Open, popular, modern



Contenders for transport
Open, popular, modern



Kafka and ZeroMQ

Reliable & scalable, but… 

… load-ignorant, by design



Arrow Flight knows what it’s carrying

Table 
Columns

Table 
Columns

Table 
Columns

gRPC



Requirements ZeroMQ Kafka Arrow Flight

Low latency Can be Can be Yes

Variable schema Yes Yes Yes

Can support tables Yes Yes Yes

Efficient for tables No No Yes

Zero Copy No No Yes

Can support real-time tables Sort of Sort of No

Bi-directional streaming Yes Yes No

Client controls throughput and latency No No No

Works in a browser No No No



Kafka and ZeroMQ are non-starters

Bad news:

1. No efficiency for tables
2. Pub & sub cannot collaborate 
3. Workarounds become gross

Blind (and blinding) appending streams



Arrow Flight

● Table super-powers

● Easily extendable

● gRPC-based (hello, streaming)

● gRPC means http2 (hello, browser)



What we needed to do

Put “table changes” in Flight’s payload

Use Flight’s DoExchange() to provide real streaming

Make a JS client that can connect & stream

1

2

3



Introducing

Barrage
Table changes (not static tables)

● Think: “deltas”

● 4 varieties –> add, remove, modify, shift

● Give this a name: streaming_tables



Barrage: DoExchange() for streaming

snapshot(): “Tell me about a subset of this table”

subscribe(): “Give me the current contents and push me updates”

publish(): “I want to send streaming_tables too”



The Javascript client was a hard problem
Problems Solutions

gRPC doesn't actually work in browsers gRPC-Web is an almost-gRPC that IS 
accessible to browsers.

gRPC and gRPC-web are not actually 
compatible

Put a proxy between server and client 
(Envoy).

gRPC-web JS client does not support 
streaming binary data

Use improbable-engineering's custom 
implementation.

Web browsers cannot stream data back 
to servers Split methods and add a server-side proxy.

Browsers require SSL for http2: bad for 
localhost & secure environments

Improbable-engineering's web socket 
proxy for gRPC



Repos worth exploring

barrage
github.com/deephaven/barrage

deephaven-core
github.com/deephaven/deephaven-core

web-client-ui
github.com/deephaven/web-client-ui

https://github.com/deephaven/barrage
https://github.com/deephaven/deephaven-core
https://github.com/deephaven/web-client-ui


Try it at deephaven.io

http://https//deephaven.io

