

STAC Update: Fast Data

Peter Nabicht President, STAC

peter.nabicht@STACresearch.com

Two topics to discuss

Latency study of OFS AccuCore HFC Hollow Core Fiber

• FPGA Special Interest Group update

Latency Study of OFS AccuCore HCF[™] Hollow Core Fiber

- Is it possible to remove nanoseconds by simply replacing fiber optic cable?
 - OFS claims you can do just that with AccuCore HCF
- OFS asked STAC, as an independent 3rd party, to:
 - Compare latency difference of AllWave FLEX Max Optical Fiber (single mode fiber), AccuCore HCF Fiber Optic Cable (hollow-core fiber)
 - Basic measurements comparing different lengths of HCF and SMF

Latency Study of OFS AccuCore HCF[™] Hollow Core Fiber

- Compared 100m as the primary stack under test (SUT)
 - A proxy for long runs in data center (i.e., "meet me" room to cage, or cage to cage)
 - Easy to extrapolate to longer runs
 - Long enough where timestamp error becomes negligible when calculating implied per-meter latency improvement
 - Tested a single 100m cable containing 2 x HCF and 2 x SMF, using one fiber of each

Copyright © 2021 Securities Technology Analysis Center LLC

Latency Study of OFS AccuCore HCF[™] Hollow Core Fiber

- Secondary SUT
 - Tested two shorter lengths to make sure there weren't major inconsistences in manufacturing
- 10m cables
 - Proxy for rack-to-rack networking in same cage
 - Tested 2 10m cables: one with 2 x HCF and & 2 x SMF, one with 4 x SMF
- 3m cables
 - Proxy for intra-rack cabling
 - Tested 2 3m cables: one with 2 x HCF and & 2 x SMF, one with 4 x SMF

Test setup

SECURITIES TECHNOLOGY ANALYSIS CENTER

Copyright © 2021 Securities Technology Analysis Center LLC

Arrival Delta

- In every test
 - HCF was on port et03
 - SMF was on port et01
- Arrival Delta
 - Time a packet arrived over HCF (et03) subtracted from time packet arrived over SMF (et01)

2:00

• A positive number indicates that HCF has a latency advantage over SMF

Measurements and error

- Arrival Delta was measured for each replayed packet.
 - Over 70 million observations per fiber length
 - No dropped packets
- Assumed that the latency of each fiber was constant over the test run
- Used the median Arrival Delta across both test runs as our measure of the latency difference.

Measurements and error

- Two potential sources of measurement error
 - Timestamping
 - Length measurement
- For timestamping, we found:
 - Skews were very small (10s of picos)
 - At such a high level of granularity, skews varied from run to run
 - The skews were all non positive, implying whatever advantage we measured for HCF would be understated
- Error in measuring length
 - Always difficult to perfectly straighten and measure cables
 - Difficult to quantify the error in doing so
 - But when we talk results we'll set some boundaries around this error

Latency improvement for 100m cable (nanoseconds)

	Measured value	Estimated Measurement uncertainty	
Total latency improvement (median Arrival Delta)	165.4	0 to -0.8	
Implied per-meter latency improvement	1.6	< 0.054	

Hollow Core Fiber was 1.6 ns faster per meter than single mode fiber

Theoretical vs measured improvement per meter (nanoseconds)

Theoretical vs measured improvement of HCF per meter (nanoseconds)

Cable length	Measured improvement	Theoretical improvement	Difference	%
3 meters	4.7	4.8	0.1	1.5%
10 meters	16.6	16.0	-0.6	-3.9%

Compared to AllWave FLEX Max Optical Fiber (single mode fiber), AccuCore HCF (hollow core fiber) was 1.6 nanoseconds faster per meter.

Copyright © 2021 Securities Technology Analysis Center LLC

Two topics to discuss

- Latency study of OFS AccuCore HFC Hollow Core Fiber
- FPGA Special Interest Group update

FPGA Special Interest Group

- Initial objectives
 - Facilitate dialog regarding common challenges in FGPA design, development, testing and deployment
 - Articulate industry requirements for FPGA hardware and toolchains where commonalities exist
 - Outline a series of best practices in the development and use of FPGA in financial services
- 8 months in:
 - Have met many times since.
 - Group growing and evolving.

FPGA SIG: Current State

- Grown to 14 active member firms
 - Exchanges, dealers, proprietary trading firms, hedge funds, and others who develop for FPGA
- Two sub-groups created
 - Hardware: working on documenting and prioritizing hardware desires for discussion with FPGA vendors
 - Toolchains: outlining tooling needs for creating continuous integration, simulation, and testing environments to accelerate FPGA developing
- Other initiatives are being discussed

