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The Trader of the Future

Augmented and Artificial Intelligence
NLP

GPT-3 class models
Sidebar: Petaflops!

Prompting; Wasserstein Distance;
Datasets & Some Results - Work by Yi Dong, Manny Scoullos



Al FOR TRADING

Selected Use Cases

®
dh

Augmented Intelligence for Artificial Intelligence for
Discretionary Traders Algo Traders
NLP Algo Development
» Text Prioritization * Time Series via RNN / Temporal CNN
« Text Summarization « Synthetic Data / VAE & GAN
 Named Entity Recognition & Knowledge (backtesting)
Graphs

Sentiment Analysis - News, Social Media, Regulatory Filings

“alt data”
Optimal execution (Reinforcement Learning)
Deep Learning for Pricing and Risk
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Al FOR TRADING

Selected Use Cases
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 Named Entity Recognition & Knowledge
Graphs

Sentiment Analysis - News, Social Media, Regulatory Filings
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Optimal execution (Reinforcement Learning)
Deep Learning for Pricing and Risk
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LANGUAGE UNDERSTANDING IMPROVEMENT
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NATURAL LANGUAGE UNDERSTANDING
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NLP MODELS ARE LARGE

The Training and Inference cost is high

20 4 ELECTRA-Large ROBERTa .
= RoBERTa @ 500k steps €
= oBERTa ___  _  —e—— .
_.- 100k steps 300k steps (fully trained)
g5 MELECTRA-Base
| ®BERT-Large
@ 'If;E.EHT-BaSF.-
o .'
v 80 4 ﬁlliLEETHﬂ.-Srnal
L -
= # GPT
— |
o |
T y BERT-Small
4 ® Smi
& 15 ma
® ELMo
10 4
® GloVe =—a Replaced Token Detection Pre-training
+—e Masked Language Model Pre-training
| ] | ] |
0 ] 2 3 4
Pre-train FLOPs le2l

1 Zettaflop = 1,000 Exaflops

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Number of Parameters by Network

GPT-3 = 175 Billion Parameters!

8.3Bn
NLP - Generative Tasks
(Chatbots, Auto-completion)

Image NLP
(Q&A, Translation)

Recognition

EXPLODING MODEL SIZE

Complexity to Train
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Test Loss

WHY LARGE MODELS?

Larger models require fewer samples The optimal model size grows smoothly

to reach the same performance

with the loss target and compute budget

Scaling Laws for Neural Language Models

Line color indicates
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SIDEBAR: HOW MUCH COMPUTE IS A PETAFLOP?

This is one reason why we built DGX A100 640GB!

Scaling Language Model Training to a Trillion Parameters Using
Megatron

By Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand and Bryan Catanzaro

Discuss (1) [@ Share €0 Like
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Number of GPUs

STAC-A2™ (beta 2) Report Card

STAC-A2 Pack for CUDA (Rev G) / 8 x NVIDIA A100 SXM4 80GiIB / 2TiB DRAM f NVIDIA DGX A100 / OpenShift 4.8.3 (RHCOS 48.84)

(SUT ID: NVDA210914)

STAC-A2. 2. HPORTFOLIO.SPEED

Ratio of options completed to elapsed time 3571 options per second

STAC-AL P2 HPORTFOLIO.ENERG_EFF

Energy efficiency =

HPORTFOLIO OPTIONS DOME fEnergy Consumed 280,607 options per kKih

Space efficiency = options per hour per

A2.2. : 1001 b
STAC-A2.p2.HFORTFOLIO SPACE_EFF HPORTFOLIO SPEED / Effective Volume *1 cubic inch
STAC.A22.GREEKS. TIME Seconds to computie all Greeks with 5 assets, 25K paths, | VWARM 0.012

and 252 timesteps COLD 0.398
VAR 0.7
STAC-A2.02.GREEKS. 10-100k-1260, TIME Seconds to compqte all G-re*eks with 10 assets, 100K
paths, and 1260 timesteps. COLD 26

STAC-A2. p2.GREEKS.MAX_ASSETS

Max assets completed in 10 minutes with 25K paths and 252

timesteps (using cold test runs). 340

STAC-A2 i2.GREEKS.MAX PATHS

Max paths completed in 10 minutes with 5 assets and 252 timesteps

(using cold test runs), 204,800,000

DGX A100 640 GB Peak Flops

FPe4: 77TF
FP32: 156 TF
TF32: 1,248 TF
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“ANY SUFFICIENTLY ADVANCED TECHNOLOGY
IS INDISTINGUISHABLE FROM MAGIC.”
- ARTHUR C. CLARKE



The three settings we explore for in-context learning

Zero-shot

THE MAGIC OF GPT3
CREATING CONTEXT VIA PROMPTING

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

One-shot #!/usr/bin/env ts-node
In addition to the task description, the model sees a single
example of the task. No gradient updates are performed. import { fetch } from "fetch-h2";

Translate English to French: task description

sea otter => loutre de mer example : : R : G - .
P async function isPositive(text: string): Promise<boolean> {

cheese => prompt const response = await fetch( http://text-processing.com/api/sentiment/ , {
method: "POST",

body: "text=${text}’

headers: {

Few-shot "Content-Type": "application/x—www—form—-urlencoded",

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

o
const json = await response.json();

return json.label === "pos";

Translate English to French: task description

J

& Copilot

sea otter => loutre de mer examples

peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => 11 <ANVIDIA.




108 secl9 add buy ©.329 0.0 121
841 sec2? add sell 0.674 0.0 82
0 sec2? delete sell 0.674 0.0 82
9 secT add buy 0.51 0.001 123

7 secl7 delete sell 0.194 0.0 123

9 sec8 add sell 0.512 0.0 30

9 secd4d modify sell 0.449 0.002 30
9 secH9 modify sell 0.255 0.002 30
9 secl8 modify buy 0.704 0.008 30
? sec2l modify buy 0.182 0.006 30
9 sec2l modify sell 0.184 0.005 30
3 sec2l modify buy 0.184 0.005 30
3 secl?2 modify sell 0.561 0.001 30
3 sect modify buy ©.35 0.001 30

3 secl7 modify sell 0.25 0.001 30
3 secl7 modify sell 0.25 0.001 30
3 sec3 modify sell 0.524 0.001 30
9 secO add sell 0.984 0.0 12

9 sec8 modify buy 0.508 0.001 12

851 secl8 modify buy 0.705 0.008 12

9 secl8 modify buy 0.705 0.008 12
3 secl2 modify sell 0.527 0.001 12
3 sec9 modify sell 0.218 0.0605 12
3 secl? modify buy 0.188 0.001 12
9 secT modify buy 0.477 0.001 12

9 sec6t modify buy 0.314 0.001 12

9 secH9 delete sell 0.218 0.005 30
9 secHY add sell 0.261 0.005 84

299 secf modify buy 0.508 0.0 84
911 secO delete buy 0.984 0.0 84
19 secO add buy 0.984 0.0 103

720 sec20 modify buy 0.519 0.0 103
633 sec20 modify buy 0.519 0.0 103

512 sec20 delete sell 0.519 0.0 103

315 secO add buy 0.984 0.0 26
19 secO add buy 0.984 0.0 115

EXPERIMENT ORDER DATA

Convert it to NLP problem

"text”: "0 sec17 add buy 0.2 0.002 84\n0 sec17 delete buy 0.169 0.001 84\n0
sec17 add buy 0.194 0.001 94\n0 sec17...

{"text": "0 sec17 add buy 0.2 0.002 8\n0 sec17 delete buy 0.169 0.001 8\n0 sec17

add buy 0.194 0.001 102\n0 sec17...

NVIDIA.



EXPERIMENT CREDIT CARD DATA

Convert it to NLP problem

user,card,date,year,month,day,time,hour,minute,amount,use chip,merchant name,merchant city,merchant state,zip,mcc,errors,is_fraud
791,1,1991-01-02 07:10:00,1991,1,2,07:10,7,10,68.0,Swipe Transaction,2027553650310142703,Burke,VA,22015,5541,,0

791,1,1991-01-02 O7:17:00,1991,1,2,07:17,7,17,-68.0,Swipe Transaction,2027553650310142703,Burke,VA,22015,5541,,0

791,1,1991-01-02 ©7:21:00,1991,1,2,07:21,7,21,113.62,Swipe Transaction,2027553650310142703,Burke,VA,22015,5541,,0
791,1,1991-01-02 17:30:00,1991,1,2,17:30,17,30,114.73,Swipe Transaction,-7269691894846892021,Burke,VA,22015,5411,,0

791,1,1991-01-03 09:03:00,1991,1,3,09:03,9,3,251.71,Swipe Transaction,-3693650930986299431,Burke,VA,22015,4814,,0
791,1,1991-01-603 11:14:00,1991,1,3,11:14,11,14,16.28,Swipe Transaction,-7269691894846892021,Burke,VA,22015,5411,,0
791,1,1991-01-03 12:46:00,1991,1,3,12:46,12,46,172.0,Swipe Transaction,3189517

791,1,1991-01-64 11:09:00,1991,1,4,11:09,11,9,16.63,Swipe Transaction,5701841789931834110,Burke,VA,22015,5411,,0
791,1,1991-01-04 13:56:00,1991,1,4,13:56,13,56,27.0,Swipe Transaction,-8194579483471190227,Burke,VA,22015,5211,,0

> 11 50 19.45 0 116607 1773 16 @
16 43 8.18 0 12 1773 11 ©
» 3.3 0 54 1773 1 0
3.06 O 54 1773 1 ©
22.21 0 12728 1773
@ 11 130.05 0 18 1793 14
1 40 49.3 0 253 18801 8 0O
11 42 17.54 30 589 23 0
19 17 28.35 54 1773 1 0O

NVIDIA.
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MOTIVATION - IBM TABFORMER DATASET

Realistic rule generated synthetic dataset for payments fraud

Favorable usage license

24M transactions, 2000 users, 100K merchants across 30 years (1990-
2020)

https://github.com/IBM/TabFormer



DOES IT WORK? FRAUD VS NOT
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DOES IT WORK? USE CHIP BY YEAR
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OVER ALL YEARS FOR A GIVEN USER, HOW DO
THEIR REAL AND SYNTHETIC TRANSACTION
AMOUNTS MATCH UP?

rrrrrrrrrrrrrrrrrrrrrr

1.4 0.0 1.4




HOW FAR APART ARE TWO DISTRIBUTIONS?

Many names, one concept

Transport Problem Earth Mover’s Distance
Wasserstein Metric 15t Mallows Distance
This can be formalized as the following linear programming problem: Let P = {{p1. wp,).....(pm.wy, )} be the first signature with m clusters, where p; is

the cluster representative and Wp, is the weight of the cluster; @ = {{g1, wq,)..... (g, g, )} the second signature with n clusters; and I = [d;;] the ground

distance matrix where dj; is the ground distance between clusters p; and g;.

We want to find a flow F = [f;], with fr-‘r- the flow between p; and aj, that minimizes the overall cost

WORK(P.Q.F) =3 "3 fiydy; .

i=1 j=1

subject to the following constraints:

fi 2 0 1<i<m1<j<n
n

Zf,-j <, 1<i<m

=1

m

Sfi £ owy, 1<j<n

i=1

m

B DY S SRS
=1 =1

i=1j=1

The first constraint allows moving "~ supplies” from F to Q and not vice versa. The next two constraints limits the amount of supplies that can be sent by the
clusters in P to their weights, and the clusters in Q to receive no more supplies than their weights; and the last constraint forces to move the maximum
amount of supplies possible. We call this amount the fotal flow. Once the transportation problem is solved, and we have found the optimal flow F, the earth
mover's distance is defined as the work normalized by the total flow:

_ Eﬂ-l:] E_‘::l f'.’i‘ d‘.? .

i=1 2j=17ij

The normalization factor is introduced in order to avoid favoring smaller signatures in the case of partial matching.

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

[ * red distribution: “dirt”
° . o * blue distribution: “holes”

.".:. ..- @ 'l..' .g. .-__-

... -g- ee o0 ® | = e i e
. . .

The distance between points (ground distance) can be Euclidean distance, Manhattan...

Example 1

The goal of the EMD algorithm is to optimize how to
distribute the weights so that all of the dirt covers all of the
holes while moving the weights through the minimum

distance possible.

https://towardsdatascience.com/earth-movers-distance-68fff0363ef2

18
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HISTOGRAMS

use chip Distance: 0.0728
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HISTOGRAMS

mcc Distance: 5.3484

le—s merchant name Distance: 303.1838
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HISTOGRAMS
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MORE WORK TO BE DONE!




HISTOGRAMS (LOG SCALE
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FRAUD DISTRIBUTION PER USER-CARD
ALTHOUGH THIS MAY MAKE THE DATASET MORE
REALISTIC...

Question: “What is distribution of legit/fraud for users with X humber of
cards?”

Assume all fraud labels in the original dataset are true positives.
If any one of thg u§er’s cards had transaction fraud, consider the user.as “fraud”
ea ynthetic

Legit/Fraud Number of Cards Legit/Fraud Number of Cards
per User Distribution per User Distribution
400

- II
N I. I. I
1

Number of Cards Number of Cards

Bl |egit
= fraud 300

Bl |egit
s fraud

250

+ 200

Count

O 150

100

50

0



AMOUNT VARIETY

99.97% transaction amounts were found in the original data
Of the remaining 0.03%, 92.5% of the amounts were within 5 cents of an original amount in the dataset

The max difference of a generated amount from any observed amount was $451.61

26 <ANVIDIA.



RETURNS OCCUR BEFORE A PURCHASE

Example
Make return for $65 then purchase $65

Same merchant name! ¥

user card year month day hour minute amount wuse chip merchant name zip mecc is_fraud date

1490 0 i - B H5.(0 ' i 0 1992-08-07 14:06:00

1490 0 g 7 1 65.0 . 9935 26064 677 0 1992-08-07 14:17:00

27 NVIDIA.



FURTHER READING

Language Models are Few-Shot Learners

Tom B. Brown” Benjamin Mann® Nick Ryder” Melanie Subbiah®

Prompt Programming for Large Language Models:
Beyond the Few-Shot Paradigm

Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

rXiv:2005.1416

C

.

o Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
5 . -
Ol ) Laria Reynolds Kyle McDonell
~ Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter moire@kne. ai kyle@knc. ai
E Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray l
X - Abstract
(o
(o Benjamin Chess Jack Clark Christopher Berner ™ Prevailing methods for mapping large generative language models to supervised tasks may fail to
T-r" sufficiently probe models” novel capabilities. Using GPT-3 as a case study, we show that O-shot prompts
‘._} Sam McCandlish Alec Radford fies Sadak e Dasta Amsodal L]:}. CAl sif___',niﬁr:uuL]_v uutp.t:rt'urm J.'E?'A-'-}i].l[:ll prompts. We suggest that the function of J.'E?'A-'-H]J.[J! l!xl-ll!fl_[:l!::ti- in Llli‘h:l!
e ~ cases 15 better described as locating an already learned task rather than meta-learning. This analysis
-/ o motivates rethinking the role of prompts in controlling and evaluating powerful language models. In this
/ — work, we diseuss methods of prompt programming, emphasizing the usefulness of considering prompis
, Q OpenAI through the lens of natural language. We explore technigques for exploiting the capacity of narratives
1 and cultural anchors to encode nuanced intentions and technigues for encouraging deconstruction of a
3 \ problem into components before producing a verdict.  Informed by this more encompassing theory of
-:l- E-':I prompt programming, we also introduce the idea of a metaprompt that seeds the model to generate its
) Abstract Wl own natural language prompts for a range of tasks, Finally, we discuss how these more general methods of
= interacting with language models can be incorporated into existing and future benchmarks and practical
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training applications.
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic —_—
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of =
thousands of examples. By contrast, humans can generally perform a new language task from only - ) ; . )
a few examples or from simple instructions — something which current NLP systems still largely L , Key Drd?' langu_nge models, tram-:tnrmf?m. ma atrf:*xtrantmg specific learned behaviors from seli-
struggle to do. Here we show that scaling up language models greatly improves task-agnostic, GPT-3, few-shot learning, prompt programming, supervised language models.

few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model. and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words. using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3"s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

arXi1v:2102.073

i

¥

metaprompts, serial reasoning, semiotics

1 Motivation

The recent rise of massive self-supervised language
models such as GPT-3 [3] and their success on down-
stream tasks has brought us one step closer to the goal
of task-agnostic artificial intelligence systems. How-
ever, despite the apparent power of such models, eur-
rent methods of controlling them to perform specific

We argue that contrary to the common interpre-
tation of the few-shot format implied by the title of
the original GPT-3 paper [3], Language models are
few-shot learners, GPT-3 is often not actually learn-
ing the task during run time from few-shot examples.
Rather than instruction, the method’s primary fune-
tion is task location in the model’s existing space of
learned tasks. This is evidenced by the effectiveness
of alternative prompts which, with no examples or
instruction, can elicit comparable or superior perfor-
manece to the few-shot format.

<ANVIDIA.



TRANSFORMER FOR NLP, VISION, AUDIO

Transformer Encoder

L x c

Vision Transformer (ViT)

MLP
Head

I

< - Norm
Transformer Encoder

-

Multi-Head
Attention

* Extra learnable = = B —
Linear Projection of Flattened Patches ]

fclass] embedding

ST L A N A
o ——— 5 I O S
alabe Ebedded

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token™ to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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Multimodal Multitask Learning with a Unified Transformer
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Transformer is All You Need:
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