THE TRADER OF TOMORROW: REVISITED

Dr. John Ashley, November 2021

The Trader of the Future

Refresher

Augmented and Artificial Intelligence NLP

The New Stuff

GPT-3 class models
Sidebar: Petaflops!

Synthetic Data Experiments

Prompting; Wasserstein Distance;
Datasets \& Some Results - Work by Yi Dong, Manny Scoullos

Al FOR TRADING

Selected Use Cases

Augmented Intelligence for Discretionary Traders
NLP

- Text Prioritization
- Text Summarization
- Named Entity Recognition \& Knowledge Graphs

Artificial Intelligence for
Algo Traders
Algo Development

- Time Series via RNN / Temporal CNN
- Synthetic Data / VAE \& GAN (backtesting)

Sentiment Analysis - News, Social Media, Regulatory Filings
"alt data"

Optimal execution (Reinforcement Learning) Deep Learning for Pricing and Risk

AI FOR TRADING

Selected Use Cases

Augmented Intelligence for
 Discretionary Traders

NLP

- Text Frorizac. Connected?
- Named Entity Recognition \& Knowledge

Artificial Intelligence for
Algo Traders
Algo Development

- Time Series via RNN / Temporal CNN Synthetic Data / VAE \& GAN (backtesting) Graphs

Sentiment Analysis - News, Social Media, Regulatory Filings

> "alt data"

Optimal execution (Reinforcement Learning)
Deep Learning for Pricing and Risk

LANGUAGE UNDERSTANDING IMPROVEMENT

Reaching human level

GLUE Aggregate Score

Detect grammatical errors
Predict if movie review is positive or negative

Decide if an abstract correctly summarizes an article

Sentence-level Semantic equivalence

Basic reading comprehension
Pronoun disambiguation

NATURAL LANGUAGE UNDERSTANDING

BERT universal language model

Input: Two sentences with 15\% of words masked out

1 = "Initially he supported himself and his by farming on a plot family land."

2 = " \square in turn attracted the attention of \quad St. \quad PostDispatch, which sent a reporter to Murray to Stubblefield's wireless review

Output 1: Reconstruct
missing words
family, of this, the, Louis, personally, telephone

Output 2: Is two the next sentence after one?

NOT_NEXT_SENTENCE

NLP MODELS ARE LARGE

The Training and Inference cost is high

EXPLODING MODEL SIZE
Complexity to Train

WHY LARGE MODELS?

SIDEBAR: HOW MUCH COMPUTE IS A PETAFLOP?

This is one reason why we built DGX A100 640GB!

Scaling Language Model Training to a Trillion Parameters Using Megatron
By Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand and Bryan Catanzaro
\Rightarrow Discuss (1) [\leftrightarrows Share Like
Tags: Conversational AI / NLP, DGX A100, Megatron, model parallelism, pipeline parallelism

Number of GPUs

STAC-A2 ${ }^{\text {TM }}$ (beta 2) Report Card
STAC-A2 Pack for CUDA (Rev G) / $8 \times$ NVIDIA A100 SXM4 80GiB / 2TiB DRAM / NVDIA DGX A100 / OpenShift 4.8.3 (RHCOS 48.84)
(SUT ID: NVDA210914)

STAC-A2.p2.HPORTFOLIO.SPEED	Ratio of options completed to elapsed time	357.1 options per second	
STAC-A2.p2.HPORTFOLIO.ENERG_EFF	Energy efficiency = HPORTFOLIO.OPTIONS_DONE / Energy Consumed	280.607 options per kWh	
STAC-A2.p2.HPORTFOLIO.SPACE_EFF	Space efficiency = HPORTFOLIO SPEED / Effective Volume	100.1 options per hour per cubic inch	
STAC-A2.ß2.GREEKS.TIME	Seconds to compute all Greeks with 5 assets, 25 K paths, and 252 timesteps. *	WARM	0.012
		COLD	0.398
STAC-A2.82.GREEKS.10-100k-1260.TIME	Seconds to compute all Greeks with 10 assets, 100 K paths, and 1260 timesteps.*	WARM	0.7
		COLD	2.6
STAC-A2.ß2.GREEKS.MAX_ASSETS	Max assets completed in 10 minutes with 25 K paths and 252 timesteps (using cold test runs).		340
STAC-A2.p2.GREEKS.MAX_PATHS	Max paths completed in 10 minutes with 5 assets and 252 timesteps (using cold test runs).		204,800,000

DGX A100 640 GB Peak Flops
FP64: 77 TF
FP32: 156 TF
TF32 : 1,248 TF

"ANY SUFFICIENTLY ADVANCED TECHNOLOGY IS INDISTINGUISHABLE FROM MAGIC."
 - ARTHUR C. CLARKE

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
Translate English to French: task description
cheese => prompt
```


One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French:
sea otter =>> loutre de mer
cheese =>
```

 task description
 example
 prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.
Translate English to French:
sea otter $\Rightarrow>$ loutre de mer
peppermint \Rightarrow menthe poivrée description
plush girafe \Rightarrow girafe peluche
cheese $=>$

THE MAGIC OF GPT3 CREATING CONTEXT VIA PROMPTING

```
Ts sentiment.ts eo write_sql.go e parse_expenses.py &i addresses.rb
    #!/usr/bin/env ts-node
    import { fetch } from "fetch-h2";
    // Determine whether the sentiment of text is positive
    // Use a web service
    sync function isPositive(text: string): Promise<boolean> {
    const response = await fetch('http://text-processing.com/api/sentiment/` , {
        method: "POST"
        body: 'text=${text}',
        headers: {
            "Content-Type": "application/x-www-form-urlencoded",
        };,
    });
    const json = await response.json() ;
    return json.label === "pos";
g% Copilot
```


EXPERIMENT ORDER DATA

Convert it to NLP problem
\{"text": "0 sec17 add buy $0.20 .00284 \backslash n 0$ sec17 delete buy 0.1690 .00184 \n0 sec 17 add buy 0.1940 .00194 In0 sec17...
\{"text": "0 sec17 add buy 0.20 .0028 \n0 sec17 delete buy $0.1690 .0018 \backslash n 0$ sec17 add buy $0.1940 .001102 \backslash n 0 \sec 17 . .$.

EXPERIMENT CREDIT CARD DATA

Convert it to NLP problem

encode

MOTIVATION - IBM TABFORMER DATASET

- Realistic rule generated synthetic dataset for payments fraud
- Favorable usage license
- 24M transactions, 2000 users, 100K merchants across 30 years (19902020)

DOES IT WORK? FRAUD VS NOT

DOES IT WORK? USE CHIP BY YEAR

OVER ALL YEARS FOR A GIVEN USER, HOW DO THEIR REAL AND SYNTHETIC TRANSACTION AMOUNTS MATCH UP?

HOW FAR APART ARE TWO DISTRIBUTIONS?

Many names, one concept

Transport Problem
Wasserstein Metric
Earth Mover's Distance
$1^{\text {st }}$ Mallows Distance
This can be formalized as the following linear programming problem: Let $P=\left\{\left(p_{1}, w_{p_{1}}\right), \ldots,\left(p_{m}, w_{p_{m}}\right)\right\}$ be the first signature with m clusters, where $p_{i} i$ is the cluster representative and $w_{p_{i}}$ is the weight of the cluster; $Q=\left\{\left(q_{1}, w_{q_{1}}\right), \ldots,\left(q_{n}, w_{q_{n}}\right)\right\}$ the second signature with n clusters; and $\mathbf{D}=\left[d_{i j}\right]$ the ground distance matrix where $d_{i j}$ is the ground distance between clusters p_{i} and q_{j}
We want to find a flow $\mathbf{F}=\left[f_{i j}\right]$, with $f_{j j}$ the flow between p_{i} and q_{j} that minimizes the overall cost
$$
\operatorname{WORK}(P, Q, \mathbf{F})=\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i j} d_{i j},
$$

subject to the following constraints

$$
\begin{aligned}
& f_{i j} \geq 0 \quad 1 \leq i \leq m, 1 \leq j \leq n \\
& \sum_{j=1}^{n} f_{i j} \leq w_{p_{i}} \quad 1 \leq i \leq m \\
& \sum_{i=1}^{m} f_{i j} \leq w_{q j} \quad 1 \leq j \leq n \\
& \sum_{i=1}^{m} \sum_{j=1}^{n} f_{i j}=\min \left(\sum_{i=1}^{m} w_{p i} \sum_{j=1}^{n} w_{q j}\right),
\end{aligned}
$$

The first constraint allows moving "supplies" from P to Q and not vice versa. The next two constraints limits the amount of supplies that can be sent by the clusters in P to their weights, and the clusters in Q to receive no more supplies than their weights; and the last constraint forces to move the maximum mount of supplies possible. We call this amount the total flow. Once the transportation problem is solved, and we have found the optimal flow \mathbf{F}, the eart $\operatorname{EMD}(P, Q)=\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i j} d_{j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}}$

Example 1

The goal of the EMD algorithm is to optimize how to distribute the weights so that all of the dirt covers all of the holes while moving the weights through the minimum distance possible.
https://towardsdatascience.com/earth-movers-distance-68fff0363ef2

HISTOGRAMS \& DISTANCES

HISTOGRAMS

HISTOGRAMS

HISTOGRAMS

MORE WORK TO BE DONE!

HISTOGRAMS (LOG SCALE)

FRAUD DISTRIBUTION PER USER-CARD

 ALTHOUGH THIS MAY MAKE THE DATASET MORE REALISTIC...- Question: "What is distribution of legit/fraud for users with X number of cards?"
- Assume all fraud labels in the original dataset are true positives.
- If any one of the Reaser's cards had transaction fraud, consider the user synthetic "fraud"

AMOUNT VARIETY

- 99.97% transaction amounts were found in the original data
- Of the remaining $0.03 \%, 92.5 \%$ of the amounts were within 5 cents of an original amount in the dataset
- The max difference of a generated amount from any observed amount was $\$ 451.61$

RETURNS OCCUR BEFORE A PURCHASE

- Example
- Make return for $\$ 65$ then purchase $\$ 65$ 区
- Same merchant name! ∇

user	card	year	month	day	hour	minute	amount	use chip	merchant name	zip	mec is_fraud			date
1490	0	1	8	7	14	6	-65.0	2	59935	26964	677	0	1992-08-07	4:06:00
1490	0	1	8	7	14	17	65.0	2	59935	26964	677	0	1992-08-07	4:17:00

FURTHER READING

Language Models are Few-Shot Learners

Tom B. Brown* \quad Benjamin Mann* \quad Nick Ryder* \quad Melanie Subbiah

| Jared Kaplan ${ }^{\dagger}$ | Prafulla Dhariwal | Arvind Neelakantan | Pranav Shyam | Girish Sastry |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Amanda Askell | Sandhini Agarwal | Ariel Herbert-Voss | Gretchen Krueger | Tom Henighan |
| Rewon Child | Aditya Ramesh | Daniel M. Ziegler | Jeffrey Wu | Clemens Winter |
| Christopher Hesse | Mark Chen | Eric Sigler | Mateusz Litwin | Scott Gray |
| Benjamin Chess | Jack Clark | Christopher Berner | | |
| Sam McCandlish | Alec Radford | Ilya Sutskever | Dario Amodei | |
| | | OpenAI | | |

Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm
Laria Reynolds

moire@knc.ai \quad| Kyle McDonell |
| :---: |
| kyle@knc.ai |

Abstract
Prevailing methods for mapping large generative language models to supervised tasks may fail to
sufficiently probe models' novel capabilities. Using GPT-3 as a case study, we show that 0-shot prompts sufficiently probe models' novel capabiities. Using GPT-3 as a case study, we show that 0-shot prompts
can significantly outperform few-shot prompts. We suggest that the function of few-shot examples in these cases is better described as locating an already learned task rather than meta-learning. This analysis motivates rethinking the role of prompts in controlling and evaluating powerful language models. In this
work, we discuss methods of prompt programming emphasizing the usefuluess of considering prompts work, we discuss methods of prompt programming, emphasizing the usefulness of considering prompts
through the lens of natural language. We explore techniques for exploiting the capacity of narratives through cultural anchors to encode nuanced intentions and techniques for encouraging deconstruction of a problem into components before producing a verdict. Informed by this more encompassing theory of
prompt programming. we also introduce the idea of a metaprompt that seeds the model to generate its prompt programming, we also introduce the idea of a metaprompt that seeds the model to generate
own natural language prompts for a range of tasks. Finally, we discuss how these more general methods of interacting with language models can be incorporated into existing and future benchmarks and practical interacting
applications.
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training in architececorpuse, this method todlowed byill requires fask-specifific fine-tuning datasets of thousands or tens of housands of examples. By contrast, humans can generally perform a new language task from onl few examples or from simple instructions - something which current NLP systems still largel
struggle to do. Here we show that scaling up language models greatly improves task-agnostic struggle to do. Here we show that scaling up language models greatly improves task-agnostic
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fin tuning approaches. SPecifically, we train GPT-3, an autoregressive language model with 177 billio
parameters, $10 x$ more than any previous non-sparse lanuage model, and test its performance rancers, $10 x$ more than any previous non-sparse language model, and test its performance he few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, an
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally ve find that GPT-3 can generate samples of news articles which human evaluators have difficulty and of GPT-3 in general.

Keywords: language models, transformers, mat at extracting specific learned behaviors from self GPT-3, few-shot learning, prompt programming, metaprompts, serial reasoning, semiotics

1 Motivation
The recent rise of massive self-supervised language models such as GPT-3 [3] and their success on downstream tasks has brought us one step closer to the goal of task-agnostic artificial intelligence systems. Howrent methods of controlling them to perform specific
supervised language models.
tation of the few-shot format ime common interpre the original GPT-3 paper [3]. Limplied by the title of few-shot learners, GPT-3 is often not actually learn ing the task during run time from few-shot examples. Rather than instruction, the method's primary function is task location in the model's existing space learned tasks. This is evidenced by the effectivene of alternative prompts which, with no examples or
instruction, can elicit comparable or superior perfor mance to the few-shot format.

TRANSFORMER FOR NLP, VISION, AUDIO

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).

Transformer is All You Need:
Multimodal Multitask Learning with a Unified Transformer

Ronghang Hu Amanpreet Singh
Facebook AI Research (FAIR)

nVIDIA.

