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Refresher 

Augmented and Artificial Intelligence

NLP

The New Stuff

GPT-3 class models

Sidebar: Petaflops!

Synthetic Data Experiments

Prompting; Wasserstein Distance; 

Datasets & Some Results – Work by Yi Dong, Manny Scoullos

The Trader of the Future
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AI FOR TRADING
Selected Use Cases

Augmented Intelligence for 

Discretionary Traders

Artificial Intelligence for 

Algo Traders

NLP

• Text Prioritization

• Text Summarization

• Named Entity Recognition & Knowledge 

Graphs

Algo Development

• Time Series via RNN / Temporal CNN

• Synthetic Data / VAE & GAN 

(backtesting)

Sentiment Analysis – News, Social Media, Regulatory Filings

“alt data” 

Optimal execution (Reinforcement Learning)

Deep Learning for Pricing and Risk
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LANGUAGE UNDERSTANDING IMPROVEMENT

SkipThought DisSent
InferSent GenSen

ELMo

BERT

MT-DNN
XLNet

RoBERTa
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Human Level

ALBERT
GLUE Aggregate Score

Detect grammatical errors

Predict if movie review is 
positive or negative

Decide if an abstract correctly 
summarizes an article

Sentence-level Semantic 
equivalence

Basic reading comprehension

Pronoun disambiguation

Reaching human level

https://gluebenchmark.com/
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NATURAL LANGUAGE UNDERSTANDING
BERT universal language model

family, of
this, the, Louis, personally, 

telephone

1 = “Initially he supported himself 
and his family by farming on a plot 
of family land.”

2 = “This in turn attracted the 
attention of the St. Louis Post-
Dispatch, which sent a reporter to 
Murray to personally review 
Stubblefield's wireless telephone.”

NOT_NEXT_SENTENCE

Input: Two sentences with 15% 
of words masked out 

Output 1: Reconstruct 
missing words 

Output 2: Is two the next 
sentence after one?

https://arxiv.org/abs/1810.04805
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NLP MODELS ARE LARGE
The Training and Inference cost is high

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

1 Zettaflop = 1,000 Exaflops

GPT-3 = 175 Billion Parameters!
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WHY LARGE MODELS?
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SIDEBAR: HOW MUCH COMPUTE IS A PETAFLOP?

This is one reason why we built DGX A100 640GB!

DGX A100 640 GB Peak Flops
FP64 :      77 TF 
FP32 :     156 TF
TF32 : 1,248 TF
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“ANY SUFFICIENTLY ADVANCED TECHNOLOGY 
IS INDISTINGUISHABLE FROM MAGIC.”

– ARTHUR C. CLARKE
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THE MAGIC OF GPT3 
CREATING CONTEXT VIA PROMPTING 

https://www.google.com/url?sa=i&url=https%3A%2F

%2Fhuggingface.co%2Fblog%2Ffew-shot-learning-

gpt-neo-and-inference-

api&psig=AOvVaw1Dild9fKDNFa25hfEDyG2i&ust=1

627428327707000&source=images&cd=vfe&ved=0

CAsQjRxqFwoTCOCgg4_xgfICFQAAAAAdAAAAA

BAk
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EXPERIMENT ORDER DATA

{"text": "0 sec17 add buy 0.2 0.002 84\n0 sec17 delete buy 0.169 0.001 84\n0 
sec17 add buy 0.194 0.001 94\n0 sec17…

{"text": "0 sec17 add buy 0.2 0.002 8\n0 sec17 delete buy 0.169 0.001 8\n0 sec17 
add buy 0.194 0.001 102\n0 sec17…

Convert it to NLP problem
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EXPERIMENT CREDIT CARD DATA

Convert it to NLP problem

encode
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MOTIVATION - IBM TABFORMER DATASET 

• Realistic rule generated synthetic dataset for payments fraud

• Favorable usage license

• 24M transactions, 2000 users, 100K merchants across 30 years (1990-
2020)

https://github.com/IBM/TabFormer
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DOES IT WORK? FRAUD VS NOT

Real Synthetic
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DOES IT WORK? USE CHIP BY YEAR

Real Synthetic
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OVER ALL YEARS FOR A GIVEN USER, HOW DO 
THEIR REAL AND SYNTHETIC TRANSACTION 
AMOUNTS MATCH UP?
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HOW FAR APART ARE TWO DISTRIBUTIONS?

Transport Problem Earth Mover’s Distance

Wasserstein Metric 1st Mallows Distance

Many names, one concept

https://towardsdatascience.com/earth-movers-distance-68fff0363ef2

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
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HISTOGRAMS & DISTANCES
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HISTOGRAMS
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HISTOGRAMS
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HISTOGRAMS
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MORE WORK TO BE DONE!



24

HISTOGRAMS (LOG SCALE)
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FRAUD DISTRIBUTION PER USER-CARD
ALTHOUGH THIS MAY MAKE THE DATASET MORE 
REALISTIC...

• Question: “What is distribution of legit/fraud for users with X number of 
cards?”

• Assume all fraud labels in the original dataset are true positives.

• If any one of the user’s cards had transaction fraud, consider the user as “fraud”
Real Synthetic
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AMOUNT VARIETY

• 99.97% transaction amounts were found in the original data

• Of the remaining 0.03%, 92.5% of the amounts were within 5 cents of an original amount in the dataset

• The max difference of a generated amount from any observed amount was $451.61
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RETURNS OCCUR BEFORE A PURCHASE

• Example

• Make return for $65 then purchase $65 🗷

• Same merchant name! 🗹
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FURTHER READING

28
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TRANSFORMER FOR NLP, VISION, AUDIO




