
1STAC 2021

Data Center and Al Group

Swanand Mhalagi Harshad Sane Kshitij Doshi

2STAC 2021

Workload optimization challenges, General

• Identifying software and hardware bottlenecks

• Separating limiting cases from inefficient usage
of resources

• Improper parameters and/or incorrect platform
configurations

A few of the common ones out of many

3STAC 2021

Workload optimization challenges, General
A few of the common ones out of many

• Identifying software and hardware bottlenecks

• Separating limiting cases from inefficient usage
of resources

• Improper parameters and/or incorrect platform
configurations

4STAC 2021

GFLOPS/s

GLOPS/byte
https://www.intel.com/content/dam/develop/public/us/en/doc
uments/roofline-analysis-with-intel-advisor.pdf

Workload optimization challenges, General
A few of the common ones out of many

• Identifying software and hardware bottlenecks

• Separating limiting cases from inefficient usage
of resources

• Improper parameters and/or incorrect platform
configurations

5STAC 2021

Workload optimization challenges, General
A few of the common ones out of many

• Identifying software and hardware bottlenecks

• Separating limiting cases from inefficient usage
of resources

• Improper parameters and/or incorrect platform
configurations CPU

CPU

6STAC 2021

Workload optimization challenges, General

• Abstraction layers

• Observability

• Control

• Productivity vs performance programming

• Tail latency (throughput is often secondary)

Again, a few of the common ones out of many

Workload optimization challenges in the cloud

Services

Applications

Microservices, Containers,
Networks

Provisioning and Scheduling

Frameworks, Runtimes,
Middleware

Low level l ibraries

Virtualization and Operating
Systems

Drivers, Firmware, BIOS,

CPU, Devices, Platform

Programmers and Users

7STAC 2021

Workload optimization challenges, General

• Abstraction layers

• Observability

• Control

• Productivity vs performance programming

• Tail latency (throughput is often secondary)

Again, a few of the common ones out of many

Workload optimization challenges in the cloud

Services

Applications

Microservices, Containers,
Networks

Provisioning and Scheduling

Frameworks, Runtimes,
Middleware

Low level l ibraries

Virtualization and Operating
Systems

Drivers, Firmware, BIOS,

CPU, Devices, Platform

Programmers and Users

8STAC 2021

Workload optimization challenges, General

• Abstraction layers

• Observability

• Control

• Productivity vs performance programming

• Tail latency (throughput is often secondary)

Again, a few of the common ones out of many

Workload optimization challenges in the cloud

Services

Applications

Microservices, Containers,
Networks

Provisioning and Scheduling

Frameworks, Runtimes,
Middleware

Low level l ibraries

Virtualization and Operating
Systems

Drivers, Firmware, BIOS,

CPU, Devices, Platform

Programmers and Users

9STAC 2021

Workload optimization challenges, General

• Abstraction layers

• Observability

• Control

• Productivity vs performance programming

• Tail latency (throughput is often secondary)

Again, a few of the common ones out of many

Workload optimization challenges in the cloud

Services

Applications

Microservices, Containers,
Networks

Provisioning and Scheduling

Frameworks, Runtimes,
Middleware

Low level l ibraries

Virtualization and Operating
Systems

Drivers, Firmware, BIOS,

CPU, Devices, Platform

Programmers and Users

10STAC 2021

11STAC 2021

Workload optimization challenges, General

• Abstraction layers

• Observability

• Control

• Productivity vs performance programming

• Tail latency (throughput is often secondary)

Again, a few of the common ones out of many

Workload optimization challenges in the cloud

Services

Applications

Microservices, Containers,
Networks

Provisioning and Scheduling

Frameworks, Runtimes,
Middleware

Low level l ibraries

Virtualization and Operating
Systems

Drivers, Firmware, BIOS,

CPU, Devices, Platform

Programmers and Users

12STAC 2021

Workload optimization challenges in the cloud

• High sensitivity to hardware (freq, cache and
mem BW, cpu & socket affinity, NUMA)

• Efficient use of vector instructions

• Efficient use of threading

• Memory management strategies across
applications, libraries, operating system

Again, a few of the common ones out of many

Challenges in financial/technical domain

13STAC 2021

• High sensitivity to hardware (freq, cache and
mem BW, cpu & socket affinity, NUMA)

• Efficient use of vector instructions

• Efficient use of threading

• Memory management strategies across
applications, libraries, operating system

Workload optimization challenges in the cloud
Again, a few of the common ones out of many

Challenges in financial/technical domain

Source:Vectorization Opportunities for Improved
Performance with Intel® AVX-512
https://www.codeproject.com/Articles/1182515/Vector

ization-Opportunities-for-Improved-Perform

https://www.codeproject.com/Articles/1182515/Vectorization-Opportunities-for-Improved-Perform

14STAC 2021

• High sensitivity to hardware (freq, cache and
mem BW, cpu & socket affinity, NUMA)

• Efficient use of vector instructions

• Efficient use of threading

• Memory management strategies across
applications, libraries, operating system

Workload optimization challenges in the cloud
Again, a few of the common ones out of many

Challenges in financial/technical domain

15STAC 2021

• High sensitivity to hardware (freq, cache and
mem BW, cpu & socket affinity, NUMA)

• Efficient use of vector instructions

• Efficient use of threading

• Memory management strategies across
applications, libraries, operating system

Workload optimization challenges in the cloud
Again, a few of the common ones out of many

Challenges in financial/technical domain

16STAC 2021

ht
tp

s:
//

w
w

w
.y

ou
tu

be
.c

om
/w

at
ch

?v
=V

m
O

8g
N

1V
gM

E

https://www.youtube.com/watch?v=VmO8gN1VgME

17STAC 2021

https://www.phoronix.com/scan.php?page=news
_item&px=Intel-Numpy-AVX-512-Landed

Intel® Contributes AVX-512 Optimizations To
Numpy, Yields Massive Speedups

“…provides optimized versions of ... the major
math functions... in both single and double
precision modes. … Intel engineers found that
even with older Intel Skylake X processors this
meant Numpy was running up to 55x faster in
select functions. The average speed-up was 14x
for double precision and 32x for single precision
performance.”

18STAC 2021

A recent journey through helping a customer with
their performance puzzle

19STAC 2021

Workload optimization challenges, General

• N copies on same cloud node

• No data or control dependencies

• Time ∝			faster-than N

• Time at N =1 also high

Extremely poor scaling with numbers of instances of the solution

Customer example problem

number of copies ®

tim
e

pe
r c

op
y

 ®

Problem illustration

20STAC 2021

Workload optimization challenes, GeneralSimplifying proxy

A

B

Customer Workload
(Python, Numpy, Dataframes)

Visualizer

Identical overall skeleton of original workload

Numpy dgemm exerciser
(sequence of matrix multiplies)

Equivalent Cpp code for 1 copy
(Intel® MKL reference example)

A

B

21STAC 2021

Workload optimization challenes, GeneralThread oversubscription

21

34

53
57

64
59

54

61

43

51
57

48
44

Active CPUs

For one copy, dgemm numpy exerciser

3
9

12 12 12 10 12 12
9 11 12 12 12

Active CPUs

For one copy, dgemm Cpp exerciser

What was happening: Open MP settings getting reset across forks

22STAC 2021

Workload optimization challenes, GeneralCorrecting for thread oversubscription

with OMP_NUM_THREADS setting

1.00

1.45

1.82

2.64

0.36

0.55

0.91

1.45

0.36

0.82

1.45

1.64

Relative Elapsed Time

Default Four OpenMP threads Eight OpenMP threads

number of copies ®

re
la

tiv
e

tim
e
®

Roughly 2X-3X improvement in elapsed time by
preventing over-activity

23STAC 2021

Workload optimization challenes, GeneralHow the time was being spent

With four OpenMP threads

2.8

8.5

18.6

1.3

3.0

11.6

29.4

1

4

16

64

System versus User time Growth (Log/Log Scale)

usr sys

number of copies ®

Useful work, but low
time efficiency

Overhead, almost all of it
in page faults (evident
from flamegraphs)

By comparison, flamegraphs for
Cpp reference code showed almost
all time in usr, and, high time
efficiency.

24STAC 2021

Workload optimization challenes, GeneralWhere were the processor cycles going?

Numpy

C++

Flame graphs facilitate visualization of how time builds up
across call hierarchies
https://www.brendangregg.com/flamegraphs.html

https://www.brendangregg.com/flamegraphs.html

25STAC 2021

Workload optimization challenes, GeneralCorrection

. . .

. . .

. . .

. . .

. . .

8
0

6

8
0

6

26STAC 2021

Workload optimization challenes, Generalmkl-service and MKL_VERBOSE

…

…

mkl-service + Intel(R) MKL: THREADING LAYER: (null)

mkl-service + Intel(R) MKL: setting Intel(R) MKL to use INTEL OpenMP runtime

mkl-service + Intel(R) MKL: preloading libiomp5.so runtime

MKL_VERBOSE oneMKL 2021.0 Update 3 Product build 20210617 for Intel(R) 64 architecture Intel(R) Advanced Vector Extensions 512 (Intel(R) AVX-512) with support of Intel(R) Deep Learning Boost

(Intel(R) DL Boost), Lnx 1.00GHz lp64 intel_thread

…

…

…

https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/managing-performance-and-memory/improving-performance-with-threading/avoiding-
conflicts-in-the-execution-environment.html

Performance resource: Developer guide for MKL

https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/managing-performance-and-memory/improving-performance-with-threading/avoiding-conflicts-in-the-execution-environment.html

27STAC 2021

Workload optimization challenes, GeneralResult

1.00

1.29
1.43

2.14

Y = 0.1553 X + 0.882

number of copies ®

re
l.

el
ap

se
d

tim
e

 ®

With 6 OpenMP threads per copy

We still get a linear increase in time, but with a
small coefficient (0.16) per additional unit of work

28STAC 2021

Performance tools which are already public or
being made public . . .

29STAC 2021

Perfspect and Intel® Telemetry Collector (ITC)
Cloud-ready lightweight hardware event monitor

• PerfSpect (https://github.com/intel/PerfSpect) provides a
hierarchical breakdown of cpu resources

• ITC utilizes PerfSpect along with other Linux utilities to
provide a sclable collection and visualization platform
telemetry

30STAC 2021

Intel® SKU emulator
On-prem and hybrid cloud exploration with software-controlled SKU emulation

• Evaluate sizing/TCO etc through software
emulation of processor SKUs
automatically

• Avoid manual intervention, errors, lack of
availibility and productivity concerns

31STAC 2021

Server-Info (svr_info)
Full health report on base system hardware and platform software and knob-settings

• 50% of issues attributed to environment and misconfigurations

• 2 Modes: Configuration, microbenchmarking to test system capabilities

32STAC 2021

Workload optimization challenes, GeneralJourney thus far, and continuing . . .

Reduced –
• Elapsed time in half
• Processor utilization by 5X (opened up

scaling headroom)
• System time by 50X
• User time by 4X

Continuing analysis: Whether invocation
differences (Numpy -> MKL) and (Cpp ->
MKL) cause any differences in
Cycles/Instruction.

Summary

Critical to divide and conquer but without losing the overall
connective tissue between performance critical
“reproducers”

Watch out for inter-layer subtleties: crossing languages,
frameworks, user-&-kernel, container-&-host

Predictable, small growth in latency is a key requirement for
scalable performance.

Intel builds and delivers cloud-ready optimized software,
including optimization tools.
https://www.intel.com/content/www/us/en/developer/ove
rview.html and further delivers cloud provider specific
optimizations as intergrated and tested open source stacks.

https://www.intel.com/content/www/us/en/developer/overview.html

33STAC 2021

Workload optimization challenes, GeneralThank you

