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Traditional Grid

• Shared storage

• Storage and compute scale 
independently

• Bottleneck on I/O fabric

• Typically exotic hardware

• Proprietary schedulers

• Homegrown application 
frameworks

I/O Fabric
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Hadoop Cluster

• Shared nothing

• Storage and compute 
scale together

• Hierarchical architecture 
minimizes data transfer

• Typically commodity 
hardware

• Open source scheduler 
and frameworks

ToR Switch

Core Switch

ToR Switch

ToR Switch ToR Switch
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Implementation Choices

• HBase

• HDFS + CSV

• HDFS + Parquet

• HDFS + AvroFile

• SQL

• Native: C / C++

• JVM: Java, Scala

• Python

• Hive / Impala

• MR4C

• MapReduce

• Spark

Storage Engine Processing Language Processing Framework
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Spark in 60 Seconds

• Started in 2009 by Matei Zaharia at UC Berkeley AMPLab

• Advancements over MapReduce:

• DAG engine

• Takes advantage of system memory

• Optimistic fault tolerance using lineage

• 10x – 100x faster

• Supports applications written in Scala, Java and Python

• Rich ecosystem: SparkStreaming, SparkR, SparkSQL, MLLib, GraphX

• Strong community: ~40 committers, 100s of contributors, multi-vendor support
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BLASH: Algorithm Implementation

• Data layout: one file per symbol for a year.

• Pipelining to avoid re-reading the data.

• Process order book for all symbols.

• Sort and filter results in the end.

• Unit Testing

• Separation of concerns – parallelization from algorithm.

• Automated verification for correctness.

• Optimizations

• Use trending to reduce expensive method invocation.

• Keep memory in check – process an order at a time.

• ~2 weeks effort. Includes coding, data generation and running benchmarks.
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Hardware

• 1 master, 1 mgmt node

• 12 workers

• 2 x E5-2695 v2 @ 2.40GHz

• 24 physical cores

• 96GB RAM

• 8 x 1TB SAS drives

• 10Gb Ethernet

Software

• RHEL 6.6

• CDH 5.4.0

• Apache Hadoop 2.6.0

• Apache Spark 1.3

• Apache Parquet 1.5

Setup
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Spark Settings

• 4 cores, 4GB per executor

• Given 288 total physical cores, theoretical 
max of 72 executors for the entire cluster

• Or 144 executors taking into account hyper-
threading

• In reality, the effective core count is 
somewhere in between

Setup
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Data set

CSV Parquet + Snappy

Avg File Size (Hi / Low) 7.5 GB
550 MB

2.2 GB
164 MB

Total Size, 1 year 8.23 TB 2.46 TB

Data Specs Full market symbols
251 trading days (1 year)
Simulated high and low volume instruments
Simulated high volume trading days
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Vertical Scaling Test
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Parquet vs CSV
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Horizontal Scaling Test
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Observations

• Lots of room for optimization

• Code refactor (avoiding expensive operations)

• Pre-processing of common data like order books, moving averages, bars, etc.

• No built-in way of dealing with split time-series data

• Processing is local only for the first split

• Workaround: use bigger HDFS block sizes

• Better: API to process file splits sequentially, ability to pass intermediate state 
to the next task
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Thank you!
@patrickangeles


